1. 基础架构
- Producer :消息生产者,就是向 kafka broker 发消息的客户端;
- Consumer :消息消费者,向 kafka broker 取消息的客户端;
- Consumer Group (CG):消费者组,由多个 consumer 组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
- Broker :一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker可以容纳多个 topic。
- Topic :可以理解为一个队列,生产者和消费者面向的都是一个 topic;
- Partition:为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 partition,每个 partition 是一个有序的队列;
- Replica:副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。
- leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是 leader。
- follower:每个分区多个副本中的“从”,实时从 leader 中同步数据,保持和 leader 数据的同步。leader 发生故障时,某个 follower 会成为新的 follower。
2. 基本命令
1)查看当前服务器中的所有 topic
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper
hadoop102:2181 --list
2)创建 topic
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper
hadoop102:2181 --create --replication-factor 3 --partitions 1 --
topic first
选项说明:
–topic 定义 topic 名
–replication-factor 定义副本数
–partitions 定义分区数
3)删除 topic
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper
hadoop102:2181 --delete --topic first
需要 server.properties 中设置 delete.topic.enable=true 否则只是标记删除。
4)生产消息
[atguigu@hadoop102 kafka]$ bin/kafka-console-producer.sh --broker-list hadoop102:9092 --topic first
>hello world
>atguigu atguigu
5)消费消息
[atguigu@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
--zookeeper hadoop102:2181 --topic first
[atguigu@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
--bootstrap-server hadoop102:9092 --topic first
[atguigu@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
--bootstrap-server hadoop102:9092 --from-beginning --topic first
–from-beginning:会把主题中以往所有的数据都读取出来。
6)查看某个 Topic 的详情
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper
hadoop102:2181 --describe --topic first
7)修改分区数
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper
hadoop102:2181 --alter --topic first --partitions 6
3. 写数据流程
- producer 先从 zookeeper 的 “/brokers/…/state” 节点找到该 partition 的 leader
- producer 将消息发送给该 leader
- leader 将消息写入本地 log
- followers 从 leader pull 消息,写入本地 log 后 leader 发送 ACK
- leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK
4. 生产者分区策略
(1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
(2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition
数进行取余得到 partition 值;
(3)既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后
面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到partition 值,也就是常说的 round-robin 算法。
5. 消费者分区分配策略
看这篇文章
https://blog.csdn.net/zh2475855601/article/details/115395248
6. zookeeper存储结构
kafka 在 zookeeper 中的存储结构如下图所示:
7. Kafka 如何保证消息的高并发写入和读取?
https://mp.weixin.qq.com/s?__biz=MzU0OTk3ODQ3Ng==&mid=2247484700&idx=1&sn=fbfdb57ea53882828e4e3bd0b3b61947&chksm=fba6ed1fccd16409c43baa7f941e522d97a72e63e4139f663b327c606c6bb5dfe516b6f61424&scene=21#wechat_redirect