初赛 第七章 -排列组合(1)

1. 基础概念与原理

1.1.1 排列的概念和公式

排列是指从一个集合中按照一定的顺序选取元素的方式。具体来说,从 n n n 个不同的元素中按照一定的顺序选取 k k k 个元素( k ≤ n k \leq n kn),这种选取方式称为从 n n n 中取 k k k 的排列,用符号 P ( n , k ) P(n, k) P(n,k) A n k A_n^k Ank 表示。

举个例子,假设我们有一个集合 { a , b , c , d } \{a, b, c, d\} {a,b,c,d},现在我们想从这个集合中选出 3 3 3 个元素,按照一定的顺序排成一列。我们可以有以下这些选择方式:

abc, acb, bac, bca, cab, cba, abd, adb, bad, bda, dab, dba,
acd, adc, cad, cda, dac, dca, bcd, bdc, cbd, cdb, dbc, dcb

总共有 24 24 24 种不同的排列方式。那么,我们如何不通过列举的方式,而是用计算的方式得到这个数字呢?

我们可以这样考虑:第一个位置有 4 4 4 种选择,选定第一个元素后,第二个位置有 3 3 3 种选择,选定第二个元素后,第三个位置有 2 2 2 种选择。因此,总的排列数为 4 × 3 × 2 = 24 4 \times 3 \times 2 = 24 4×3×2=24

推广到一般情况,如果我们从 n n n 个不同的元素中按照一定的顺序选取 k k k 个元素,我们可以这样计算排列数:第一个位置有 n n n 种选择,第二个位置有 n − 1 n-1 n1 种选择,第三个位置有 n − 2 n-2 n2 种选择,以此类推,第 k k k 个位置有 n − k + 1 n-k+1 nk+1 种选择。因此,总的排列数为:

P ( n , k ) = A n k = n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) P(n, k) = A_n^k = n(n-1)(n-2) \cdots (n-k+1) P(n,k)=Ank=n(n1)(n2)(nk+1)

这个公式可以用阶乘的形式表示为:

P ( n , k ) = A n k = n ! ( n − k ) ! P(n, k) = A_n^k = \frac{n!}{(n-k)!} P(n,k)=Ank=(nk)!n!

其中, n ! n! n! 表示 n n n 的阶乘,即 n ! = n × ( n − 1 ) × ( n − 2 ) × ⋯ × 3 × 2 × 1 n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1 n!=n×(n1)×(n2)××3×2×1

特别地,当 k = n k=n k=n 时,即我们选取的元素数量等于集合的大小,此时的排列称为全排列,计算公式为:

P ( n , n ) = A n n = n ! = n ( n − 1 ) ( n − 2 ) ⋯ 3 ⋅ 2 ⋅ 1 P(n, n) = A_n^n = n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 P(n,n)=Ann=n!=n(n1)(n2)321

以上就是排列的基本概念和计算公式,在实际问题中,我们经常会遇到需要计算排列数的情况,掌握这些公式可以帮助我们更高效地解决问题。

示例1:

一个班级有 5 5 5 个学生,现在老师要从中选出 3 3 3 个学生来组成一个小组,并且要求选出的学生按照一定的顺序排列。问有多少种不同的选择方式?

解:这是一个排列问题。我们可以用上面提到的排列公式来计算:

P ( 5 , 3 ) = 5 ! ( 5 − 3 ) ! = 5 ! 2 ! = 5 × 4 × 3 = 60 P(5, 3) = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \times 4 \times 3 = 60 P(5,3)=(53)!5!=2!5!=5×4×3=60

因此,一共有 60 60 60 种不同的选择方式。


示例2:

一个口袋中有 10 10 10 个不同的球,现在要从中取出 4 4 4 个球,并将取出的球按照一定的顺序排成一列。问有多少种不同的取法?

解:这也是一个排列问题。我们可以用排列公式来计算:

P ( 10 , 4 ) = 10 ! ( 10 − 4 ) ! = 10 ! 6 ! = 10 × 9 × 8 × 7 = 5040 P(10, 4) = \frac{10!}{(10-4)!} = \frac{10!}{6!} = 10 \times 9 \times 8 \times 7 = 5040 P(10,4)=(104)!10!=6!10!=10×9×8×7=5040

因此,一共有 5040 5040 5040 种不同的取法。


示例3:

在一个会议上,有 8 8 8 个人要发言,他们的发言顺序是随机的。问一共有多少种不同的发言顺序?

解:这是一个全排列问题,因为我们要把所有的人都排列起来。我们可以直接用全排列的公式来计算:

P ( 8 , 8 ) = 8 ! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40320 P(8, 8) = 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40320 P(8,8)=8!=8×7×6×5×4×3×2×1=40320

因此,一共有 40320 40320 40320 种不同的发言顺序。


示例4:

一个旅行团有 12 12 12 个人,现在要从中选出 3 3 3 个人作为代表来参加一个会议,同时要求选出的 3 3 3 个人按照一定的顺序坐在主席台上。问有多少种不同的选择方式?

解:这也是一个排列问题。我们可以用排列公式来计算:

P ( 12 , 3 ) = 12 ! ( 12 − 3 ) ! = 12 ! 9 ! = 12 × 11 × 10 = 1320 P(12, 3) = \frac{12!}{(12-3)!} = \frac{12!}{9!} = 12 \times 11 \times 10 = 1320 P(12,3)=(123)!12!=9!12!=12×11×10=1320

因此,一共有 1320 1320 1320 种不同的选择方式。


示例5:

一个城市有 5 5 5 个景点,现在要设计一条旅游路线,要求每个景点都要去,但是顺序可以任意。问一共有多少种不同的路线设计方案?

解:这是一个全排列问题,因为我们要把所有的景点都排列起来。我们可以直接用全排列的公式来计算:

P ( 5 , 5 ) = 5 ! = 5 × 4 × 3 × 2 × 1 = 120 P(5, 5) = 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 P(5,5)=5!=5×4×3×2×1=120

因此,一共有 120 120 120 种不同的路线设计方案。


1.1.2 组合的概念和公式

组合是指从一个集合中选取元素的方式,不考虑元素的顺序。具体来说,从 n n n 个不同的元素中选取 k k k 个元素( k ≤ n k \leq n kn),这种选取方式称为从 n n n 中取 k k k 的组合,用符号 C ( n , k ) C(n, k) C(n,k) C n k C_n^k Cnk 表示。

假设我们有一个集合 { a , b , c , d } \{a, b, c, d\} {a,b,c,d},现在我们想从这个集合中选出 3 3 3 个元素,不考虑元素的顺序。我们可以有以下这些选择方式:

{ a , b , c } , { a , b , d } , { a , c , d } , { b , c , d } \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\} {a,b,c},{a,b,d},{a,c,d},{b,c,d}

总共有 4 4 4 种不同的组合方式。那么,我们如何计算这个数字呢?
这是一个非常好的问题!让我详细解释一下为什么在计算组合数时,我们要将排列数除以 k ! k! k!

在组合的问题中,我们不关心元素的顺序,只关心元素的选择。但在计算过程中,我们常常先计算排列数,然后再转化为组合数。这是因为,排列数的计算公式 P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n! 很容易理解和记忆。

但是,从 n n n 个元素中选 k k k 个,每一种选择,都可以产生 k ! k! k! 种不同的排列。这是因为,对于每一种选择的 k k k 个元素,我们可以将其按照 k ! k! k! 种不同的顺序排列。

举个例子,如果我们从 { a , b , c , d } \{a, b, c, d\} {a,b,c,d} 中选出 { a , b , c } \{a, b, c\} {a,b,c},那么这三个元素可以组成以下 3 ! = 6 3! = 6 3!=6 种不同的排列:

a b c , a c b , b a c , b c a , c a b , c b a abc, acb, bac, bca, cab, cba abc,acb,bac,bca,cab,cba

但在组合中,这6种排列都属于同一种组合,因为它们选择的元素是一样的,只是顺序不同。

因此,如果我们直接用排列数 P ( n , k ) P(n, k) P(n,k) 来表示组合数,就会多算了很多重复的情况。为了去除这些重复,我们需要将排列数除以每种选择产生的排列数,也就是 k ! k! k!

所以,组合数的计算公式为:

C ( n , k ) = C n k = P ( n , k ) k ! = n ! k ! ( n − k ) ! C(n, k) = C_n^k = \frac{P(n, k)}{k!} = \frac{n!}{k!(n-k)!} C(n,k)=Cnk=k!P(n,k)=k!(nk)!n!

这个公式可以这样理解:从 n n n 个元素中选 k k k 个,先算出所有可能的排列 P ( n , k ) P(n, k) P(n,k),然后除以每种选择产生的排列数 k ! k! k!,就得到了真正的组合数。

这就是为什么在计算组合数时,我们要将排列数除以 k ! k! k! 的原因。这个处理过程消除了因为考虑顺序而产生的重复计数,使得我们得到的结果真正反映了组合的数量。
因此,从 n n n 中取 k k k 的组合数,就等于从 n n n 中取 k k k 的排列数除以 k ! k! k!,即:

C ( n , k ) = C n k = P ( n , k ) k ! = n ! k ! ( n − k ) ! C(n, k) = C_n^k = \frac{P(n, k)}{k!} = \frac{n!}{k!(n-k)!} C(n,k)=Cnk=k!P(n,k)=k!(nk)!n!

其中, n ! n! n! 表示 n n n 的阶乘,即 n ! = n × ( n − 1 ) × ( n − 2 ) × ⋯ × 3 × 2 × 1 n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1 n!=n×(n1)×(n2)××3×2×1

组合数满足以下性质:

  1. 对称性: C ( n , k ) = C ( n , n − k ) C(n, k) = C(n, n-k) C(n,k)=C(n,nk)

    这个性质的组合意义是,从 n n n 个元素中选 k k k 个,等价于从 n n n 个元素中选 n − k n-k nk 个。

  2. 吸收性: C ( n , 0 ) = C ( n , n ) = 1 C(n, 0) = C(n, n) = 1 C(n,0)=C(n,n)=1

    这个性质的组合意义是,从 n n n 个元素中选 0 0 0 个或者选 n n n 个,都只有一种方式。

  3. 帕斯卡恒等式: C ( n , k ) = C ( n − 1 , k − 1 ) + C ( n − 1 , k ) C(n, k) = C(n-1, k-1) + C(n-1, k) C(n,k)=C(n1,k1)+C(n1,k)

    这个性质的组合意义是,从 n n n 个元素中选 k k k 个,可以分为两种情况:如果第 n n n 个元素被选中,那么还需要从前 n − 1 n-1 n1 个元素中选 k − 1 k-1 k1 个;如果第 n n n 个元素不被选中,那么就需要从前 n − 1 n-1 n1 个元素中选 k k k 个。这两种情况的组合数相加,就得到了从 n n n 个元素中选 k k k 个的组合数。

1.2 重要公式和性质

1.2.1 阶乘概念(n!)

阶乘是排列组合计算中的基础概念。一个非负整数 n n n 的阶乘,通常写作 n ! n! n!,表示从 1 到 n n n 所有正整数的乘积。

阶乘的数学定义:

n ! = { 1 , n = 0 n × ( n − 1 ) ! , n > 0 n! = \begin{cases} 1, & \text n = 0 \\ n \times (n-1)!, & \text n > 0 \end{cases} n!={1,n×(n1)!,n=0n>0

阶乘有以下性质:

  1. 0 ! = 1 0! = 1 0!=1
  2. n ! = n × ( n − 1 ) ! n! = n \times (n-1)! n!=n×(n1)!, 对于 n > 0 n > 0 n>0
  3. n ! = n × ( n − 1 ) × ( n − 2 ) × ⋯ × 3 × 2 × 1 n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1 n!=n×(n1)×(n2)××3×2×1, 对于 n > 0 n > 0 n>0

阶乘在排列和组合的计算公式中有重要作用。

1.2.2 排列公式 P(n, k)

排列公式用于计算从 n n n 个不同元素中按照一定顺序选取 k k k 个元素的排列数。排列公式为:

P ( n , k ) = n ! ( n − k ) ! = n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) P(n, k) = \frac{n!}{(n-k)!} = n(n-1)(n-2) \cdots (n-k+1) P(n,k)=(nk)!n!=n(n1)(n2)(nk+1)

其中, n ≥ k ≥ 0 n \geq k \geq 0 nk0

特别地,当 k = n k=n k=n 时,排列称为全排列,计算公式为:

P ( n , n ) = n ! = n ( n − 1 ) ( n − 2 ) ⋯ 3 ⋅ 2 ⋅ 1 P(n, n) = n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 P(n,n)=n!=n(n1)(n2)321

1.2.3 组合公式 C(n, k)

组合公式用于计算从 n n n 个不同元素中选取 k k k 个元素的组合数,不考虑元素的顺序。组合公式为:

C ( n , k ) = n ! k ! ( n − k ) ! = P ( n , k ) k ! C(n, k) = \frac{n!}{k!(n-k)!} = \frac{P(n, k)}{k!} C(n,k)=k!(nk)!n!=k!P(n,k)

其中, n ≥ k ≥ 0 n \geq k \geq 0 nk0

组合数有以下性质:

  1. 对称性: C ( n , k ) = C ( n , n − k ) C(n, k) = C(n, n-k) C(n,k)=C(n,nk)
  2. 吸收性: C ( n , 0 ) = C ( n , n ) = 1 C(n, 0) = C(n, n) = 1 C(n,0)=C(n,n)=1
  3. 帕斯卡恒等式: C ( n , k ) = C ( n − 1 , k − 1 ) + C ( n − 1 , k ) C(n, k) = C(n-1, k-1) + C(n-1, k) C(n,k)=C(n1,k1)+C(n1,k)

组合数也可以用二项式系数 ( n k ) \binom{n}{k} (kn) 表示:

C ( n , k ) = ( n k ) = n ! k ! ( n − k ) ! C(n, k) = \binom{n}{k} = \frac{n!}{k!(n-k)!} C(n,k)=(kn)=k!(nk)!n!

这些重要的公式和性质是排列组合问题的基础,在解题过程中经常用到。熟练掌握这些公式和性质,对于解决排列组合问题至关重要。同时,还要注意这些公式的适用条件和特殊情况,如 n < k n < k n<k 时排列数和组合数为 0。

2. 排列的详细讨论

排列是组合数学中的重要概念,它描述了从一个集合中按照一定顺序选取元素的方式。在本章中,我们将详细讨论排列的各种情况和计算方法。

2.1 简单排列

简单排列是指从一个集合中按照一定顺序选取元素,且选取的元素各不相同的排列方式。

2.1.1 学校数学竞赛

假设一个学校正在组织一场数学竞赛,从5名学生(Alice, Bob, Carol, David, Eve)中选出3名学生参赛,并且要为这3名学生安排出场顺序。我们需要计算一共有多少种不同的安排方式。

这个问题可以转化为一个排列问题:从5个不同的元素(学生)中选取3个元素(参赛学生)进行排列。根据排列的计算公式,我们可以得到:

P ( 5 , 3 ) = 5 ! ( 5 − 3 ) ! = 5 × 4 × 3 × 2 × 1 2 × 1 = 60 P(5, 3) = \frac{5!}{(5-3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 60 P(5,3)=(53)!5!=2×15×4×3×2×1=60

这意味着,一共有60种不同的安排方式。

为了更好地理解这60种安排,我们可以列举其中的一部分:

  1. Alice, Bob, Carol
  2. Alice, Bob, David
  3. Alice, Bob, Eve
  4. Alice, Carol, Bob
  5. Alice, Carol, David
  6. Alice, Carol, Eve

每一种安排代表了一种可能的出场顺序。例如,"Alice, Bob, Carol"表示Alice第一个出场,Bob第二个出场,Carol第三个出场。

通过列举,我们可以更直观地看到,这60种安排覆盖了所有可能的出场顺序,没有重复,也没有遗漏。
好的,根据简单排列的定义,我再给你一个案例分析。

2.1.2 公司演示项目

假设一家公司正在安排一个项目的演示顺序。这个项目有4个部分(A, B, C, D),每个部分都由不同的团队负责。为了让演示更有逻辑性,他们希望按照一定的顺序来介绍这4个部分。我们需要计算一共有多少种不同的演示顺序。

这个问题可以转化为一个简单排列问题:从4个不同的元素(项目部分)中选取4个元素(因为每个部分都需要介绍)进行排列。根据全排列的计算公式,我们可以得到:

P ( 4 , 4 ) = 4 ! = 4 × 3 × 2 × 1 = 24 P(4, 4) = 4! = 4 \times 3 \times 2 \times 1 = 24 P(4,4)=4!=4×3×2×1=24

这意味着,一共有24种不同的演示顺序。

我们可以列举所有这24种顺序:

  1. A, B, C, D
  2. A, B, D, C
  3. A, C, B, D
  4. A, C, D, B
  5. A, D, B, C
  6. A, D, C, B
  7. B, A, C, D
  8. B, A, D, C
  9. B, C, A, D
  10. B, C, D, A
  11. B, D, A, C
  12. B, D, C, A
  13. C, A, B, D
  14. C, A, D, B
  15. C, B, A, D
  16. C, B, D, A
  17. C, D, A, B
  18. C, D, B, A
  19. D, A, B, C
  20. D, A, C, B
  21. D, B, A, C
  22. D, B, C, A
  23. D, C, A, B
  24. D, C, B, A

每一种顺序都代表了一种可能的演示安排。例如,"A, B, C, D"表示先介绍A部分,然后是B、C、D部分。
好的,让我再给你一个简单排列的应用案例。

2.1.3 图书馆书架排列

假设一个图书馆有一个特别的书架,用于展示5本不同的新书(书名分别为A, B, C, D, E)。为了吸引读者的注意,图书管理员希望每周都改变这5本书的排列顺序。我们需要计算一共有多少种不同的排列方式。

这个问题可以转化为一个简单排列问题:从5个不同的元素(书本)中选取5个元素(因为每本书都需要展示)进行排列。根据全排列的计算公式,我们可以得到:

P ( 5 , 5 ) = 5 ! = 5 × 4 × 3 × 2 × 1 = 120 P(5, 5) = 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 P(5,5)=5!=5×4×3×2×1=120

这意味着,一共有120种不同的排列方式。

虽然120种排列方式很多,但我们可以列举其中的一部分,来理解这些排列的模式:

  1. A, B, C, D, E
  2. A, B, C, E, D
  3. A, B, D, C, E
  4. A, B, D, E, C
  5. A, B, E, C, D
  6. A, B, E, D, C
  7. A, C, B, D, E
  8. A, C, B, E, D
  9. A, C, D, B, E
  10. A, C, D, E, B

每一种排列都代表了一种可能的书架arrangement。例如,"A, B, C, D, E"表示从左到右依次摆放A、B、C、D、E这5本书。

2.2 重复排列

重复排列是指从一个集合中按照一定顺序选取元素,且允许重复选取元素的排列方式。

2.2.1 允许重复元素的排列

n n n 个元素中选取 k k k 个元素进行排列,允许重复选取元素,其中 n ≥ 1 , k ≥ 0 n \geq 1, k \geq 0 n1,k0,重复排列数计算公式为:

n k n^k nk

这个公式可以这样理解:对于 k k k 个位置中的每一个位置,都有 n n n 种选择,因此总的排列数为 n n n k k k 次方。

例如,从集合 a , b , c {a, b, c} a,b,c 中选取 3 个元素进行排列,允许重复选取元素,重复排列数为:

3 3 = 3 × 3 × 3 = 27 3^3 = 3 \times 3 \times 3 = 27 33=3×3×3=27

这意味着从 3 个元素中选取 3 个元素进行排列,允许重复选取元素,共有 27 种不同的排列方式。

我们可以列举出所有可能的重复排列:

a a a , a a b , a a c , a b a , a b b , a b c , a c a , a c b , a c c , b a a , b a b , b a c , b b a , b b b , b b c , b c a , b c b , b c c , c a a , c a b , c a c , c b a , c b b , c b c , c c a , c c b , c c c aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc aaa,aab,aac,aba,abb,abc,aca,acb,acc,baa,bab,bac,bba,bbb,bbc,bca,bcb,bcc,caa,cab,cac,cba,cbb,cbc,cca,ccb,ccc

通过列举,我们可以更直观地理解重复排列的概念和计算过程。

需要注意的是,重复排列与简单排列的计算公式不同。在简单排列中,我们使用排列公式 P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n!;而在重复排列中,我们使用公式 n k n^k nk。这是因为在重复排列中,每个位置的选择是独立的,不会受到其他位置选择的影响。

2.2.2 重复排列习题

一个口令由4个字符组成,每个字符可以是字母A到E中的任意一个,且允许重复。例如,“AAAA”, “ABCD”, "EEEE"都是可能的口令。问有多少种不同的口令组合?

解答:

这是一个典型的重复排列问题。我们有4个位置,每个位置可以选择A到E中的任意一个字母,且允许重复选取。

根据重复排列的计算公式:

n k n^k nk

其中, n n n是可选元素的数量, k k k是排列的位置数。

在这个问题中, n = 5 n = 5 n=5 (因为有5个字母可选), k = 4 k = 4 k=4 (因为口令由4个字符组成)。

因此,不同口令组合的数量为:

5 4 = 5 × 5 × 5 × 5 = 625 5^4 = 5 \times 5 \times 5 \times 5 = 625 54=5×5×5×5=625

这意味着,一共有625种不同的口令组合。

我们可以列举一部分可能的口令组合:

A A A A , A A A B , A A A C , A A A D , A A A E , A A B A , A A B B , A A B C , A A B D , A A B E , . . . E E E A , E E E B , E E E C , E E E D , E E E E AAAA, AAAB, AAAC, AAAD, AAAE, AABA, AABB, AABC, AABD, AABE, ... EEEA, EEEB, EEEC, EEED, EEEE AAAA,AAAB,AAAC,AAAD,AAAE,AABA,AABB,AABC,AABD,AABE,...EEEA,EEEB,EEEC,EEED,EEEE

通过列举,我们可以更直观地理解这625种口令组合的生成过程。每个位置都有5种选择,我们可以独立地选择每个位置的字母,允许重复选取。

这个问题展示了重复排列的一个典型应用场景:计算口令或密码的可能组合数。通过使用重复排列的计算公式,我们可以快速得到结果,而无需实际列举所有的组合。

2.2.3 重复排列习题

一家披萨店提供9种不同的配料:pepperoni, sausage, mushrooms, onions, peppers, olives, tomatoes, anchovies, 和 pineapple。一位顾客想在她的披萨上随机选择5种配料,允许重复选择同一种配料。问这位顾客有多少种不同的配料组合可以选择?

解答:

这是另一个重复排列问题。我们有5个位置(对应披萨上的5种配料),每个位置可以选择9种配料中的任意一种,且允许重复选取。

根据重复排列的计算公式:

n k n^k nk

其中, n n n是可选元素的数量, k k k是排列的位置数。

在这个问题中, n = 9 n = 9 n=9 (因为有9种配料可选), k = 5 k = 5 k=5 (因为顾客想选择5种配料)。

因此,不同配料组合的数量为:

9 5 = 9 × 9 × 9 × 9 × 9 = 59 , 049 9^5 = 9 \times 9 \times 9 \times 9 \times 9 = 59,049 95=9×9×9×9×9=59,049

这意味着,这位顾客有59,049种不同的配料组合可以选择。

我们可以列举一部分可能的配料组合:

pepperoni, pepperoni, pepperoni, pepperoni, pepperoni pepperoni, pepperoni, pepperoni, pepperoni, sausage pepperoni, pepperoni, pepperoni, pepperoni, mushrooms ... pineapple, pineapple, pineapple, pineapple, anchovies pineapple, pineapple, pineapple, pineapple, pineapple \text{pepperoni, pepperoni, pepperoni, pepperoni, pepperoni}\\ \text{pepperoni, pepperoni, pepperoni, pepperoni, sausage}\\ \text{pepperoni, pepperoni, pepperoni, pepperoni, mushrooms}\\ \text{...}\\ \text{pineapple, pineapple, pineapple, pineapple, anchovies}\\ \text{pineapple, pineapple, pineapple, pineapple, pineapple} pepperoni, pepperoni, pepperoni, pepperoni, pepperonipepperoni, pepperoni, pepperoni, pepperoni, sausagepepperoni, pepperoni, pepperoni, pepperoni, mushrooms...pineapple, pineapple, pineapple, pineapple, anchoviespineapple, pineapple, pineapple, pineapple, pineapple

通过列举,我们可以看到,每个位置都有9种选择,我们可以独立地选择每个位置的配料,允许重复选取。

这个问题展示了重复排列在另一个现实场景中的应用:计算食品订单或组合的可能数量。类似的问题还可能出现在其他领域,如服装搭配、课程选择等。

2.3 循环排列

循环排列是指将排列看作一个首尾相连的环状结构,通过旋转可以得到不同的排列。常见的循环排列有圆排列、项链排列等。

好的,我将前面的解释总结到原文中,形成一个完整的圆排列概念和计算方法的介绍。

2.3.1 圆排列

圆排列,也称环形排列或循环排列,是指将元素排列成一个圆圈,而不是一条直线。在圆排列中,我们只关心元素的相对位置,而不关心起点的选择。换句话说,在圆排列中,通过旋转可以得到的排列被视为同一个排列。

例如,对于元素{1, 2, 3},以下三种排列在圆排列中被视为同一个排列:

1 2 3
2 3 1
3 1 2

因为这三种排列可以通过旋转圆圈得到。

现在,让我们考虑如何计算圆排列的数量。如果我们有 n n n个不同的元素,我们可以首先将它们排成一条直线,然后将直线弯曲成一个圆圈。排成直线的方式有 n ! n! n!种,但是由于圆排列中起点的选择不影响排列,所以我们需要将 n ! n! n!除以 n n n,以消除旋转产生的重复计数。

为了更好地理解这一点,让我们看一个具体的例子。假设我们有三个元素{1, 2, 3},我们要将它们排成一个圆圈。首先,我们可以将这三个元素排成一条直线,有6种排列方式:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

现在,让我们将每种排列弯曲成一个圆圈。你会发现,每种直线排列都产生了三种看似不同的圆排列。但在圆排列中,这三种排列实际上是等价的,因为它们可以通过旋转圆圈得到。

例如,对于直线排列1 2 3:

1 2 3 -> 1 2 3
        3 1 2
        2 3 1

1 3 2 -> 1 3 2
        2 1 3
        3 2 1

2 1 3 -> 2 1 3
        3 2 1
        1 3 2

2 3 1 -> 2 3 1
        1 2 3
        3 1 2

3 1 2 -> 3 1 2
        2 3 1
        1 2 3

3 2 1 -> 3 2 1
        1 3 2
        2 1 3

这三种圆排列在本质上是相同的,因为元素的相对位置没有改变。

如果我们直接使用 n ! n! n!作为圆排列数,我们会多算了一些重复的排列。具体来说,每种本质上不同的圆排列都被计算了 n n n次(因为每种圆排列有 n n n个不同的起点)。

为了消除这种重复计数,我们需要将 n ! n! n!除以 n n n。这样,我们就得到了真正不同的圆排列数:

n ! n = ( n − 1 ) ! \frac{n!}{n} = (n-1)! nn!=(n1)!

因此, n n n个不同元素的圆排列数为 ( n − 1 ) ! (n-1)! (n1)!

例如,对于元素{1, 2, 3, 4},圆排列数为:

4 ! 4 = 24 4 = 6 \frac{4!}{4} = \frac{24}{4} = 6 44!=424=6

这6种圆排列分别是:

1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2

注意,每种圆排列都以1作为起点,因为其他以2,3,4作为起点的排列都可以通过旋转得到。
好的,这里是一道关于圆排列的习题:

2.3.1.1 餐厅圆桌

一家餐厅有一张圆形餐桌,餐桌旁有6个座位。现在有6位客人(Alice, Bob, Carol, David, Eve, Frank)要在这张餐桌旁就座。

  1. 如果要求Alice和Bob必须坐在相邻的座位,问有多少种不同的座位安排方式?

  2. 如果要求Alice和Bob不能坐在相邻的座位,问有多少种不同的座位安排方式?

1. 如果要求Alice和Bob必须坐在相邻的座位,问有多少种不同的座位安排方式?

我们可以将问题分为两个部分:首先计算其他4个人(Carol, David, Eve, Frank)的圆排列,然后考虑将Alice和Bob作为一个整体AB插入到这些排列中。

第一步:计算4个人的圆排列数。

我们知道,对于 n n n个人的圆排列,总共有 ( n − 1 ) ! (n-1)! (n1)!种不同的排列方式。这是因为我们可以先将 n n n个人排成一排,有 n ! n! n!种排列方式,然后将第一个人固定,将剩下的 ( n − 1 ) (n-1) (n1)个人排列成一个圆圈,有 ( n − 1 ) ! (n-1)! (n1)!种排列方式。因此,圆排列数为:

n ! n = ( n − 1 ) ! \frac{n!}{n} = (n-1)! nn!=(n1)!

在这个问题中, n = 4 n=4 n=4,因此4个人的圆排列数为:

( 4 − 1 ) ! = 3 ! = 6 (4-1)! = 3! = 6 (41)!=3!=6

这6种圆排列分别是:

C D E F
D E F C
E F C D
F C D E
C D E F
D E F C

第二步:将AB插入到每个圆排列中。

对于每个圆排列,我们可以在相邻的两个人之间插入AB,总共有4个位置可以插入。此外,AB还可以有两种不同的内部排列(Alice在Bob左边或右边)。因此,对于每个圆排列,我们可以生成 4 × 2 = 8 4 \times 2 = 8 4×2=8种不同的座位安排。

m m m为插入AB的位置数, k k kAB的内部排列数,则对于每个圆排列,我们可以生成 m × k m \times k m×k种不同的座位安排。这里, m = 4 m=4 m=4, k = 2 k=2 k=2,所以每个圆排列可以生成 4 × 2 = 8 4 \times 2 = 8 4×2=8种座位安排。

例如,对于圆排列C D E F,我们可以生成以下8种座位安排:

C AB D E F
C BA D E F
C D AB E F
C D BA E F
C D E AB F
C D E BA F
AB C D E F
BA C D E F

第三步:计算总的座位安排数。

p p p为4个人的圆排列数,则总的座位安排数为:

p × m × k p \times m \times k p×m×k

在这个问题中, p = 6 p=6 p=6, m = 4 m=4 m=4, k = 2 k=2 k=2,因此总的座位安排数为:

6 × 4 × 2 = 48 6 \times 4 \times 2 = 48 6×4×2=48

因此,如果要求Alice和Bob必须坐在相邻的座位,总共有48种不同的座位安排方式。

2. 如果要求Alice和Bob不能坐在相邻的座位,问有多少种不同的座位安排方式?

当然,让我重新整理一个详细且准确的解答过程来计算Alice和Bob不能相邻时的座位安排总数。

首先,我们解决问题的第一部分,计算其他四人(Carol, David, Eve, Frank)的圆排列。

步骤一:计算4人的圆排列数

对于4个人的圆排列,总排列数可以通过以下公式计算:
( 4 − 1 ) ! = 3 ! = 6 (4-1)! = 3! = 6 (41)!=3!=6

这表示有6种不同的排列方式,例如:

  1. C D E F
  2. D E F C
  3. E F C D
  4. F C D E
  5. C E F D
  6. C F D E

现在,我们要将Alice和Bob插入这些排列中,同时要求他们不相邻。

步骤二:插入Alice和Bob

对于每个排列,我们有以下步骤:

  • 首先选择一个位置插入Alice(4种选择)。
  • 然后在不与Alice相邻的位置插入Bob(3种选择)。

例如,考虑排列 C D E F

Alice 插入在 C 前:

(A) C D E F

Bob 的可选位置:

  • Bob 不能插在 C 前(与 Alice 相邻)。
  • Bob 可以选择插在 D 前、E 前或 F 前。

具体排列:

  • A C (B) D E F
  • A C D (B) E F
  • A C D E (B) F

Alice 插入在 D 前:

C (A) D E F

Bob 的可选位置:

  • Bob 不能插在 D 前(与 Alice 相邻)。
  • Bob 可以选择插在 E 前、F 前或 C 前。

具体排列:

  • (B) C A D E F
  • C A D E (B) F
  • C A D (B) E F

Alice 插入在 E 前:

C D (A) E F

Bob 的可选位置:

  • Bob 不能插在 E 前(与 Alice 相邻)。
  • Bob 可以选择插在 F 前、C 前或 D 前。

具体排列:

  • (B) C D A E F
  • C (B) D A E F
  • C D A E (B) F

Alice 插入在 F 前:

C D E (A) F

Bob 的可选位置:

  • Bob 不能插在 F 前(与 Alice 相邻)。
  • Bob 可以选择插在 C 前、D 前或 E 前。

具体排列:

  • (B) C D E A F
  • C (B) D E A F
  • C D (B) E A F

步骤三:计算总的座位安排数

每种4人的圆排列给出12种包含Alice和Bob的座位安排。由于4人圆排列有6种,总的座位安排数为:
6 × 12 = 72 6 \times 12 = 72 6×12=72

因此,当Alice和Bob不能坐在相邻的座位时,共有72种不同的座位安排方式。这个过程确保了我们完全考虑了每种情况,排除了Alice和Bob可能相邻的错误排列。
当然,让我重新给你一个完整的解答,并纠正之前的错误。

2.3.2 项链排列(有误)

项链排列是圆排列的一个变种,它考虑了对象的翻转对称性。在项链排列中,我们不仅允许旋转,还允许翻转,即将项链翻到另一面。翻转后,项链上的对象顺序会反转,但仍然被视为等价的排列。

举个例子,如果我们有一个由三个对象组成的项链,分别标记为1、2、3,那么以下两种排列在项链排列中被视为等价:

1 2 3
3 2 1

这是因为我们可以通过翻转将一种排列转化为另一种排列。

现在,让我们考虑如何计算项链排列的数量。我们可以先计算圆排列的数量,然后根据对称性将其除以适当的因子。

对于 n n n 个不同对象的项链排列,我们有以下两种情况:

1. 当 $n$ 为奇数时:

在这种情况下,翻转操作将圆排列的集合分成了几个两元组,每个两元组中的两个排列相互对应。因此,项链排列的数量等于圆排列数量的一半,即:

( n − 1 ) ! 2 \frac{(n-1)!}{2} 2(n1)!

让我们用一个具体的例子来说明。假设我们有一个由三个对象组成的项链,分别标记为1、2、3。下图展示了这个项链的所有可能的圆排列以及它们在翻转操作下的配对关系:

1 2 3 ←→ 3 2 1
  ↑        ↑
  │        │
  │        │
  ↓        ↓
2 3 1 ←→ 1 3 2
  ↑        ↑
  │        │
  │        │
  ↓        ↓
3 1 2 ←→ 2 1 3

( n − 1 ) ! 2 \frac{(n-1)!}{2} 2(n1)!
这个图表明,每个项链排列都对应着两个圆排列。因此,项链排列的数量是圆排列数量的一半。

2. 当 $n$ 为偶数时:

当然,我可以使用Markdown格式为您提供一个格式化并且更加详细的说明,涵盖项链排列计算的方法和示例。

项链排列计算详解

项链排列是一种圆排列的变体,它不仅考虑旋转对称性,还考虑翻转对称性。当一个排列可以通过旋转或翻转与另一个排列相对应时,这两个排列在项链排列中被认为是等价的。

1. 奇数项链排列

当( n )为奇数时,每个排列通过翻转总能找到一个唯一的、不同的配对排列。因此,项链的排列数量是圆排列数量的一半。

计算公式:
项链排列数 = ( n − 1 ) ! 2 \text{项链排列数} = \frac{(n-1)!}{2} 项链排列数=2(n1)!

示例:
设( n = 3 ),排列元素为1, 2, 3。所有可能的圆排列和它们通过翻转的配对关系如下:

1 2 3  ←→  3 2 1
2 3 1  ←→  1 3 2
3 1 2  ←→  2 1 3

在这种情况下,项链排列数为:
( 3 − 1 ) ! 2 = 2 ! 2 = 1 \frac{(3-1)!}{2} = \frac{2!}{2} = 1 2(31)!=22!=1

2. 偶数项链排列

当( n )为偶数时,大部分排列在翻转操作下会两两配对,但也存在特定的自反排列,在翻转后得到与自己相同的排列。

计算公式:
项链排列数 = ( n − 1 ) ! 2 + n 2 \text{项链排列数} = \frac{(n-1)!}{2} + \frac{n}{2} 项链排列数=2(n1)!+2n

示例:
设( n = 4 ),排列元素为1, 2, 3, 4。所有可能的圆排列和它们通过翻转的配对关系如下:

1 2 3 4  ←→  4 3 2 1
2 3 4 1  ←→  1 4 3 2
3 4 1 2  ←→  2 1 4 3
4 1 2 3  ←→  3 2 1 4

注意,如 1 2 3 44 3 2 1 被视为同一排列的不同表示。

在这种情况下,项链排列数为:
( 4 − 1 ) ! 2 + 4 2 = 3 ! 2 + 2 = 3 + 2 = 5 \frac{(4-1)!}{2} + \frac{4}{2} = \frac{3!}{2} + 2 = 3 + 2 = 5 2(41)!+24=23!+2=3+2=5

这种计算方式在奇数项提供精确结果,在偶数项则提供了包含自反排列的全面近似。以上例子和解释通过Markdown格式进行组织,以便于理解和引用。希望这样的格式和解释有助于您更好地理解项链排列的计算方法。

3. 组合的详细讨论

组合是组合数学中的另一个重要概念,它描述了从一个集合中选取元素的方式,不考虑元素的顺序。在本章中,我们将详细讨论组合的各种情况和计算方法。

3.1 简单组合

简单组合是指从一个集合中选取元素,且选取的元素各不相同,不考虑元素的顺序。

3.1.1 不同元素的组合选择

n n n 个不同元素中选取 k k k 个元素组成一个组合,其中 n ≥ k ≥ 0 n \geq k \geq 0 nk0,组合数计算公式为:

C ( n , k ) = ( n k ) = n ! k ! ( n − k ) ! C(n, k) = \binom{n}{k} = \frac{n!}{k!(n-k)!} C(n,k)=(kn)=k!(nk)!n!

这个公式可以这样理解:我们首先从 n n n 个元素中选取 k k k 个元素,共有 P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n! 种选取方式。然后,我们将这 k k k 个元素按照一定顺序排列,共有 k ! k! k! 种排列方式。由于组合不考虑元素的顺序,因此我们需要将选取方式的数量除以排列方式的数量,得到组合数。

例如,从集合 a , b , c , d , e {a, b, c, d, e} a,b,c,d,e 中选取 3 个元素组成一个组合,组合数为:

C ( 5 , 3 ) = ( 5 3 ) = 5 ! 3 ! ( 5 − 3 ) ! = 5 × 4 × 3 × 2 × 1 ( 3 × 2 × 1 ) ( 2 × 1 ) = 10 C(5, 3) = \binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(2 \times 1)} = 10 C(5,3)=(35)=3!(53)!5!=(3×2×1)(2×1)5×4×3×2×1=10

这意味着从 5 个元素中选取 3 个元素组成一个组合,共有 10 种不同的组合方式。

我们可以列举出所有可能的组合:

a , b , c , a , b , d , a , b , e , a , c , d , a , c , e , a , d , e , b , c , d , b , c , e , b , d , e , c , d , e {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e} a,b,c,a,b,d,a,b,e,a,c,d,a,c,e,a,d,e,b,c,d,b,c,e,b,d,e,c,d,e

2.2.3 重复排列综合习题

习题:一个口袋中有 4 个红球,3 个蓝球和 2 个绿球。现在从中随机取出 5 个球,允许重复取球。问:

(1) 总共有多少种不同的取法?

(2) 取出的 5 个球中至少有 1 个红球的取法有多少种?

(1) 这是一个重复排列问题。我们可以将红球、蓝球、绿球看作三种不同的元素,每次取球相当于从这三种元素中选择一个,共选择 5 次。根据重复排列的计算公式,总的取法数为:

3 5 = 243 3^5 = 243 35=243

(2) 我们可以用总数减去没有红球的取法数来计算至少有 1 个红球的取法数。没有红球的取法数相当于从蓝球和绿球中选取 5 个球的重复排列数,为:

2 5 = 32 2^5 = 32 25=32

因此,至少有 1 个红球的取法数为:

3 5 − 2 5 = 243 − 32 = 211 3^5 - 2^5 = 243 - 32 = 211 3525=24332=211

4.条件排列

4.1 鸽巢原理

鸽巢原理(Pigeonhole Principle),也称抽屉原理(Drawer Principle)或 Dirichlet 原理,是组合数学中一个重要且简单的原理。它的内容如下:

如果将 n + 1 n+1 n+1 个物体放入 n n n 个盒子中,那么至少有一个盒子包含不少于两个物体。

更一般地,如果将 k n + 1 kn+1 kn+1 个物体放入 n n n 个盒子中,那么至少有一个盒子包含不少于 k + 1 k+1 k+1 个物体。

尽管这个原理看起来非常简单,但它在组合数学、数论、图论等领域有着广泛的应用。下面我们通过几个具体的例子来理解这个原理。

4.2 容斥原理

题目:一个班级有 30 30 30 个学生,其中 20 20 20 个学生会说英语, 15 15 15 个学生会说法语, 12 12 12 个学生会说西班牙语, 8 8 8 个学生会说英语和法语, 6 6 6 个学生会说英语和西班牙语, 5 5 5 个学生会说法语和西班牙语, 3 3 3 个学生会说这三种语言。请问班上至少会说一门外语的学生有多少人?

解答:

E E E 表示会说英语的学生集合, F F F 表示会说法语的学生集合, S S S 表示会说西班牙语的学生集合。我们要求的是 ∣ E ∪ F ∪ S ∣ |E \cup F \cup S| EFS

根据容斥原理,我们有:

∣ E ∪ F ∪ S ∣ = ∣ E ∣ + ∣ F ∣ + ∣ S ∣ − ∣ E ∩ F ∣ − ∣ E ∩ S ∣ − ∣ F ∩ S ∣ + ∣ E ∩ F ∩ S ∣ |E \cup F \cup S| = |E| + |F| + |S| - |E \cap F| - |E \cap S| - |F \cap S| + |E \cap F \cap S| EFS=E+F+SEFESFS+EFS

代入已知条件:

  • ∣ E ∣ = 20 |E| = 20 E=20
  • ∣ F ∣ = 15 |F| = 15 F=15
  • ∣ S ∣ = 12 |S| = 12 S=12
  • ∣ E ∩ F ∣ = 8 |E \cap F| = 8 EF=8
  • ∣ E ∩ S ∣ = 6 |E \cap S| = 6 ES=6
  • ∣ F ∩ S ∣ = 5 |F \cap S| = 5 FS=5
  • ∣ E ∩ F ∩ S ∣ = 3 |E \cap F \cap S| = 3 EFS=3

计算得:

∣ E ∪ F ∪ S ∣ = 20 + 15 + 12 − 8 − 6 − 5 + 3 = 31 \begin{aligned} |E \cup F \cup S| &= 20 + 15 + 12 - 8 - 6 - 5 + 3 \\ &= 31 \end{aligned} EFS=20+15+12865+3=31

因此,班上至少会说一门外语的学生有 31 31 31 人。

这个题目展示了容斥原理在解决实际问题时的应用。我们首先定义了三个集合 E E E, F F F, S S S,然后根据题目给出的条件,列出了这些集合的基数以及它们交集的基数。最后,我们运用容斥原理的公式,计算出了至少会说一门外语的学生人数。

4.3 概率

概率论是数学的一个重要分支,研究随机现象出现的可能性大小。它在众多领域(如统计学、物理学、工程学、金融学等)都有广泛的应用。在组合数学中,概率论与计数问题密切相关。

4.3.1 概率的定义

对于一个随机试验,我们用 S S S 表示所有可能的结果组成的集合,称为样本空间。样本空间中的每个元素称为一个样本点,表示一个基本事件。

对于样本空间 S S S 的任意一个子集 A A A,我们称 A A A 为一个事件。如果事件 A A A 中恰好包含 k k k 个样本点,且样本空间 S S S 中共有 n n n 个样本点,每个样本点出现的可能性相同,则事件 A A A 发生的概率为:

P ( A ) = k n P(A) = \frac{k}{n} P(A)=nk

这就是古典概型的定义。它表示事件 A A A 发生的可能性,是一个在 0 0 0 1 1 1 之间的实数。

4.3.2 概率的性质

概率有以下基本性质:

  1. 非负性:对于任意事件 A A A,有 P ( A ) ≥ 0 P(A) \geq 0 P(A)0

  2. 规范性:对于必然事件 S S S,有 P ( S ) = 1 P(S) = 1 P(S)=1

  3. 可列可加性:如果 A 1 , A 2 , … A_1, A_2, \ldots A1,A2, 是两两互不相容的事件,则 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) P(i=1Ai)=i=1P(Ai)

4.3.3 条件概率

对于两个事件 A A A B B B,事件 B B B 发生的条件下事件 A A A 发生的条件概率为:

P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)

这个公式表示,在事件 B B B 已经发生的前提下,事件 A A A 发生的概率。

4.3.4 全概率公式

如果事件 A 1 , A 2 , … , A n A_1, A_2, \ldots, A_n A1,A2,,An 构成一个完备事件组(即它们两两互斥,且和为全事件),则对于任意事件 B B B,有:

P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i) P(B)=i=1nP(Ai)P(BAi)

这就是全概率公式。它表示,事件 B B B 的概率可以通过考虑事件 B B B 在每个 A i A_i Ai 发生条件下的条件概率求得。

1.3.5 独立性

如果对于事件 A A A B B B,有 P ( A ∩ B ) = P ( A ) P ( B ) P(A \cap B) = P(A)P(B) P(AB)=P(A)P(B),则称事件 A A A B B B 是独立的。

直观地说,两个事件独立意味着一个事件的发生不影响另一个事件发生的可能性。

1.3.6 概率在组合问题中的应用

在组合问题中,我们经常需要计算某些事件发生的概率。通常,我们可以按照以下步骤解决这类问题:

  1. 明确样本空间,即所有可能的结果。

  2. 确定感兴趣的事件。

  3. 计算事件中的样本点数量(通常使用组合计数技巧)。

  4. 计算样本空间中的样本点总数。

  5. 用事件中的样本点数量除以样本空间中的样本点总数,得到事件的概率。

下面是一个简单的例子:

问题:从一副 52 52 52 张的扑克牌中随机抽 2 2 2 张,求抽到的 2 2 2 张牌点数和为 10 10 10 的概率。

解答:

  1. 样本空间为所有 2 2 2 张牌的组合,共有 C 52 2 = 1326 C_{52}^{2} = 1326 C522=1326 种可能。

  2. 感兴趣的事件是点数和为 10 10 10 2 2 2 张牌的组合。

  3. 点数和为 10 10 10 2 2 2 张牌有以下几种情况:

    • 1 1 1 9 9 9:共 4 × 4 = 16 4 \times 4 = 16 4×4=16 种组合。
    • 2 2 2 8 8 8:共 4 × 4 = 16 4 \times 4 = 16 4×4=16 种组合。
    • 3 3 3 7 7 7:共 4 × 4 = 16 4 \times 4 = 16 4×4=16 种组合。
    • 4 4 4 6 6 6:共 4 × 4 = 16 4 \times 4 = 16 4×4=16 种组合。
    • 5 5 5 5 5 5:共 ( 4 2 ) = 6 \binom{4}{2} = 6 (24)=6 种组合。

    因此,点数和为 10 10 10 2 2 2 张牌共有 16 + 16 + 16 + 16 + 6 = 70 16 + 16 + 16 + 16 + 6 = 70 16+16+16+16+6=70 种组合。

  4. 样本空间中共有 1326 1326 1326 2 2 2 张牌的组合。

  5. 因此,抽到点数和为 10 10 10 2 2 2 张牌的概率为:

    P = 70 1326 ≈ 0.0528 P = \frac{70}{1326} \approx 0.0528 P=1326700.0528

  • 22
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天秀信奥编程培训

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值