排列组合加强版习题
1.1排列组合习题1
-
从10个不同的数字中选择5个数字组成一个数,问有多少种不同的组合方式?
-
一个班级有10名男生和15名女生。从中选出5名学生组成一个委员会,其中必须包括至少2名男生和2名女生。问有多少种不同的选择方式?
-
有4种不同颜色的球,每种颜色的球有3个。问从中取出5个球,有多少种不同的取法,使得至少包含2种不同颜色的球?
-
一个口袋中有8个红球,6个蓝球和4个绿球。从中随机抽出4个球,问抽出的4个球中恰好有2个红球、1个蓝球和1个绿球的概率是多少?
-
有8个不同的字母,问由这些字母组成的长度为4的字符串中,恰好包含2个元音字母的字符串有多少个?(假设元音字母有4个)
-
一个圆桌旁坐着6个人,其中3个人面朝圆桌内,3个人面朝圆桌外。问有多少种不同的坐法,使得任意两个面朝内的人都不相邻?
-
有8个不同的礼物,要分给3个小朋友,每个小朋友至少得到1个礼物。问有多少种不同的分配方式?
1.2排列组合习题1解析
1.从10个不同的数字中选择5个数字组成一个数,问有多少种不同的组合方式?
解析:
这是一个组合问题。我们需要从10个不同的数字中选出5个数字,顺序不重要。我们可以使用组合公式来计算:
C ( n , k ) = n ! k ! ( n − k ) ! C(n, k) = \frac{n!}{k!(n-k)!} C(n,k)=k!(n−k)!n!
其中,n是总的选择数量,k是每次选择的数量。在这个问题中,n=10,k=5。
步骤:
- 计算n!
n! = 10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3,628,800
- 计算k!
k! = 5! = 5 × 4 × 3 × 2 × 1 = 120
- 计算(n-k)!
(n-k)! = (10-5)! = 5! = 5 × 4 × 3 × 2 × 1 = 120
- 将这些值代入组合公式
C ( 10 , 5 ) = 10 ! 5 ! ( 10 − 5 ) ! = 3 , 628 , 800 120 × 120 = 252 C(10, 5) = \frac{10!}{5!(10-5)!} = \frac{3,628,800}{120 × 120} = 252 C(10,5)=5!(10−5)!10!=120×1203,628,800=252
因此,从10个不同的数字中选择5个数字组成一个数,有252种不同的组合方式。
这个问题也可以用另一种思路来解决。我们可以考虑,我们需要从10个数字中选择5个,这相当于从10个位置中选择5个位置来放置这些数字。这就转化为了一个"位置的组合"问题,计算方法与上面相同。
总之,无论是考虑数字的组合还是位置的组合,我们都可以使用组合公式来计算可能的组合数量。理解这一点对于解决各种组合问题非常重要。
- 一个班级有10名男生和15名女生。从中选出5名学生组成一个委员会,其中必须包括至少2名男生和2名女生。问有多少种不同的选择方式?
解析:
这个问题可以用容斥原理来解决。我们可以先计算总的选择方式,然后减去不满足条件的选择方式。
步骤:
- 计算总的选择方式数,即从25名学生中选出5名学生的组合数。
C ( 25 , 5 ) = 25 ! 5 ! ( 25 − 5 ) ! = 53130 C(25, 5) = \frac{25!}{5!(25-5)!} = 53130 C(25,5)=5!(25−5)!25!=53130
- 计算不满足条件的选择方式数,即从10名男生中选出0名或1名男生,同时从15名女生中选出5名或4名女生的组合数;或者从10名男生中选出5名或4名男生,同时从15名女生中选出0名或1名女生的组合数。
- 选0名男生和5名女生: C ( 10 , 0 ) × C ( 15 , 5 ) = 3003 C(10, 0) \times C(15, 5) = 3003 C(10,0)×C(15,5)=3003
- 选1名男生和4名女生: C ( 10 , 1 ) × C ( 15 , 4 ) = 10010 C(10, 1) \times C(15, 4) = 10010 C(10,1)×C(15,4)=10010
- 选5名男生和0名女生: C ( 10 , 5 ) × C ( 15 , 0 ) = 252 C(10, 5) \times C(15, 0) = 252 C(10,5)×C(15,0)=252
- 选4名男生和1名女生: C ( 10 , 4 ) × C ( 15 , 1 ) = 3150 C(10, 4) \times C(15, 1) = 3150 C(10,4)×C(15,1)=3150
- 将不满足条件的选择方式数减去,得到最终结果。
满足条件的选择方式数 = 总的选择方式数 - 不满足条件的选择方式数
= 53130 - (3003 + 10010 + 252 + 3150)
= 36715因此,有36715种不同的选择方式,可以从这个班级中选出5名学生组成一个委员会,其中包括至少2名男生和2名女生。
这个问题的关键是正确识别和计算不满足条件的选择方式。容斥原理在处理这类问题时非常有用,它可以帮助我们避免重复计算,得到正确的结果。
- 有4种不同颜色的球,每种颜色的球有3个。问从中取出5个球,有多少种不同的取法,使得至少包含2种不同颜色的球?
解析(容斥原理):
我们可以直接计算至少包含2种颜色的取球方式数。这可以通过计算包含2种、3种和4种颜色的取球方式数,然后加起来得到。
步骤:
- 计算包含2种颜色的取球方式数:
C ( 4 , 2 ) × ∑ i = 1 4 C ( 3 , i ) × C ( 3 , 5 − i ) = 6 × ( 3 + 0 + 0 + 0 ) = 18 C(4, 2) \times \sum_{i=1}^{4} C(3, i) \times C(3, 5-i) = 6 \times (3 + 0 + 0 + 0) = 18 C(4,2)×∑i=14C(3,i)×C(3,5−i)=6×(3+0+0+0)=18
这里我们考虑了从第一种颜色取1个球、2个球、3个球和4个球的所有情况。
- 计算包含3种颜色的取球方式数:
C ( 4 , 3 ) × ∑ i = 1 3 ∑ j = 1 4 − i C ( 3 , i ) × C ( 3 , j ) × C ( 3 , 5 − i − j ) = 4 × ( 3 × 3 + 3 × 0 + 0 × 0 ) = 36 C(4, 3) \times \sum_{i=1}^{3} \sum_{j=1}^{4-i} C(3, i) \times C(3, j) \times C(3, 5-i-j) = 4 \times (3 \times 3 + 3 \times 0 + 0 \times 0) = 36 C(4,3)×∑i=13∑j=14−iC(3,i)×C(3,j)×C(3,5−i−j)=4×(3×3+3×0+0×0)=36
这里我们考虑了从第一种颜色取1个、2个或3个球,第二种颜色取1个、2个或3个球的所有情况。
- 计算包含4种颜色的取球方式数:
C ( 4 , 4 ) × C ( 3 , 1 ) × C ( 3 , 1 ) × C ( 3 , 1 ) × C ( 3 , 2 ) = 1 × 3 × 3 × 3 × 3 = 81 C(4, 4) \times C(3, 1) \times C(3, 1) \times C(3, 1) \times C(3, 2) = 1 \times 3 \times 3 \times 3 \times 3 = 81 C(4,4)×C(3,1)×C(3,1)×C(3,1)×C(3,2)=1×3×3×3×3=81
这里我们考虑了从每种颜色中取1个球,然后从剩下的球中取1个球的情况。
- 将以上三种情况的取球方式数相加,得到最终结果:
至少包含2种颜色的取球方式数 = 包含2种颜色的取球方式数 + 包含3种颜色的取球方式数 + 包含4种颜色的取球方式数
= 18 + 36 + 81
= 135因此,有135种不同的取法,可以从4种颜色的球中取出5个球,使得至少包含2种不同颜色的球。
这种方法直接计算了至少包含2种颜色的取球方式数,避免了减法操作。但是,它需要分别计算包含2种、3种和4种颜色的取球方式数,计算过程相对复杂一些。在实际问题中,我们可以根据具体情况选择更方便的方法。
- 一个口袋中有8个红球,6个蓝球和4个绿球。从中随机抽出4个球,问抽出的4个球中恰好有2个红球、1个蓝球和1个绿球的概率是多少?
解析:
这是一个典型的概率问题,我们可以用古典概型来解决。我们需要计算满足条件的抽球方式数,然后除以总的抽球方式数。
步骤:
- 计算总的抽球方式数,即从18个球中抽出4个球的组合数。
C ( 18 , 4 ) = 18 ! 4 ! ( 18 − 4 ) ! = 3060 C(18, 4) = \frac{18!}{4!(18-4)!} = 3060 C(18,4)=4!(18−4)!18!=3060
- 计算满足条件的抽球方式数,即从8个红球中抽出2个,从6个蓝球中抽出1个,从4个绿球中抽出1个的组合数的乘积。
C ( 8 , 2 ) × C ( 6 , 1 ) × C ( 4 , 1 ) = 8 ! 2 ! ( 8 − 2 ) ! × 6 ! 1 ! ( 6 − 1 ) ! × 4 ! 1 ! ( 4 − 1 ) ! = 28 × 6 × 4 = 672 C(8, 2) \times C(6, 1) \times C(4, 1) = \frac{8!}{2!(8-2)!} \times \frac{6!}{1!(6-1)!} \times \frac{4!}{1!(4-1)!} = 28 \times 6 \times 4 = 672 C(8,2)×C(6,1)×C(4,1)=2!(8−2)!8!×1!(6−1)!6!×1!(4−1)!4!=28×6×4=672
- 计算概率,即满足条件的抽球方式数除以总的抽球方式数。
P = 672 3060 = 112 510 ≈ 0.2196 P = \frac{672}{3060} = \frac{112}{510} \approx 0.2196 P=3060672=510112≈0.2196
因此,从这个口袋中随机抽出4个球,其中恰好有2个红球、1个蓝球和1个绿球的概率约为0.2196或21.96%。
这个问题的关键是正确计算满足条件的抽球方式数。我们需要在每种颜色的球中分别进行组合,然后将这些组合数相乘。这里体现了乘法原理:如果一个事件可以分成几个独立的步骤,每个步骤的可能性数分别为 n 1 , n 2 , . . . , n k n_1, n_2, ..., n_k n1,n2,...,nk,那么这个事件的可能性数就是 n 1 × n 2 × . . . × n k n_1 \times n_2 \times ... \times n_k n1×n2×...×nk。
- 有8个不同的字母,问由这些字母组成的长度为4的字符串中,恰好包含2个元音字母的字符串有多少个?(假设元音字母有4个)
解析(修正版):
这是一个组合与排列相结合的问题。我们需要从4个元音字母中选择2个,从4个辅音字母中选择2个,然后将选出的4个字母进行全排列。
步骤:
- 从4个元音字母中选择2个的组合数:
C ( 4 , 2 ) = 4 ! 2 ! ( 4 − 2 ) ! = 6 C(4, 2) = \frac{4!}{2!(4-2)!} = 6 C(4,2)=2!(4−2)!4!=6
- 从4个辅音字母中选择2个的组合数:
C ( 4 , 2 ) = 4 ! 2 ! ( 4 − 2 ) ! = 6 C(4, 2) = \frac{4!}{2!(4-2)!} = 6 C(4,2)=2!(4−2)!4!=6
- 将选出的4个字母(2个元音字母和2个辅音字母)进行全排列:
P ( 4 , 4 ) = 4 ! = 24 P(4, 4) = 4! = 24 P(4,4)=4!=24
- 将以上三个步骤的结果相乘,得到最终结果:
恰好包含2个元音字母的字符串数 = 选择2个元音字母的组合数 × 选择2个辅音字母的组合数 × 字母全排列数
= 6 × 6 × 24
= 864因此,由8个字母(其中4个是元音字母)组成的长度为4的字符串中,恰好包含2个元音字母的字符串有864个。
- 一个圆桌旁坐着6个人,其中3个人面朝圆桌内,3个人面朝圆桌外。问有多少种不同的坐法,使得任意两个面朝内的人都不相邻?
解析:
这是一个排列问题。我们可以先安排面朝外的人,再在剩下的位置安排面朝内的人。
步骤:
- 首先,我们安排面朝外的人。这可以看作是将3个面朝外的人排列在一个圆桌旁,所以方式数为:
3 ! 3 = 2 \frac{3!}{3} = 2 33!=2
这里我们除以3是因为圆桌是对称的,旋转圆桌不会产生新的排列。
- 然后,我们在剩下的3个位置安排面朝内的人。为了满足任意两个面朝内的人都不相邻,我们必须在面朝外的人之间安排面朝内的人。这就相当于在3个面朝外的人形成的3个空隙中插入3个面朝内的人,所以方式数为:
3 ! = 6 3! = 6 3!=6
- 将以上两个步骤的结果相乘,得到最终结果:
不同的坐法数 = 面朝外的人的排列数 × 面朝内的人的插入方式数
= 2 × 6
= 12因此,有12种不同的坐法,使得任意两个面朝内的人都不相邻。
这个问题的关键是将问题分解为两个独立的步骤:安排面朝外的人和安排面朝内的人。对于面朝外的人,我们使用圆排列;对于面朝内的人,我们使用插入排列。这种分步解决的思路在处理复杂的排列组合问题时非常有用。
- 有8个不同的礼物,要分给3个小朋友,每个小朋友至少得到1个礼物。问有多少种不同的分配方式?
解析:
这个问题可以用隔板法来解决。我们可以将问题转化为在7个间隔中插入2个隔板,然后将礼物分配给隔板划分出的区域。
步骤:
我们先给每个小朋友分配1个礼物,这是为了满足每个小朋友至少得到1个礼物的条件。现在还剩下5个礼物。
我们将这5个礼物排成一行:
□ □ □ □ □ \square\square\square\square\square □□□□□
现在,我们在这5个礼物之间有4个间隔(每两个礼物之间有一个间隔,最左边和最右边各有一个间隔),如下:
∣ □ ∣ □ ∣ □ ∣ □ ∣ □ ∣ |\square|\square|\square|\square|\square| ∣□∣□∣□∣□∣□∣
- 我们需要在这4个间隔中插入2个隔板,每个隔板代表一个小朋友的礼物划分。插入隔板后,我们就得到了3个小朋友的礼物分配。例如:
∣ □ ∣ □ ∥ ∣ □ ∣ □ ∣ □ ∣ |\square|\square\||\square|\square|\square| ∣□∣□∥∣□∣□∣□∣
在this example中,第一个小朋友得到2个礼物,第二个小朋友得到0个礼物(但他已经有了初始的1个礼物),第三个小朋友得到3个礼物。
- 现在,问题转化为了在4个间隔中插入2个隔板有多少种方式。这就是一个组合问题,我们从4个位置中选择2个位置插入隔板,方式数为:
C ( 4 , 2 ) = 4 ! 2 ! ( 4 − 2 ) ! = 6 C(4, 2) = \frac{4!}{2!(4-2)!} = 6 C(4,2)=2!(4−2)!4!=6
- 但是,这还不是最终答案。因为我们在步骤1中给每个小朋友都分配了1个礼物,所以实际上每个小朋友得到的礼物数量都要加1。这相当于在步骤3得到的每种分配方式中,每个小朋友都额外得到1个礼物。但这并不影响分配方式的数量。
因此,有6种不同的分配方式,可以将8个不同的礼物分给3个小朋友,每个小朋友至少得到1个礼物。
这个问题的关键是使用隔板法将问题转化为一个组合问题。通过给每个小朋友预先分配1个礼物,我们满足了每个小朋友至少得到1个礼物的条件。然后,我们将剩下的礼物看作一个整体,在它们之间插入隔板,就得到了不同的分配方式。这种解题思路在处理分配问题时非常有用。