组合数(逆元)

组合数公式:C(n,m)=n!/((n-m)!*m!)(m≤n)
组合数性质1:C(n,m)= C(n,n-m)
组合数性质2:C(n,m)=C(n-1,m-1)+C(n-1,m)
代码用组合数公式求C(n,m)%mod.设((n-m)!*m!)逆元为x,则C(n,m)%mod=n!*x%mod.

public class Main {
	static InputReader sc=new InputReader(System.in);
	static int maxn=100010,p=1000000007;
	static long f[]=new long[maxn];
	public static void main(String args[]) {
		PrintWriter out=new PrintWriter(System.out);
		f[0]=1;
		for(int i=1;i<maxn;i++) {
			f[i]=f[i-1]*i%p;
		}
		out.println(C(b,a)%p);//C(n,m),n>=m.
	}
	static long C(int a,int b) {
		long A=f[b];
		long B=f[b-a]*f[a]%p;
		long C=mod_reverse(B, p);
		return A*C%p;
	}
	static class LLong{
		long v=0;
	}
	static long extend_gcd(long a,long b,LLong x,LLong y)
	{
	  if(a==0&&b==0) return -1;//无最大公约数
	  if(b==0){x.v=1;y.v=0;return a;}
	  long d=extend_gcd(b,a%b,y,x);
	  y.v-=a/b*x.v;
	  return d;
	}
	//*********求逆元素*******************
	//ax = 1(mod n)
	static long mod_reverse(long a,long n)
	{
	  LLong x=new LLong(),y=new LLong();
	  long d=extend_gcd(a,n,x,y);
	  if(d==1) return (x.v%n+n)%n;
	  else return -1;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值