P2574 XOR的艺术
AKN 觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏。在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下
拥有一个伤害串,是一个长度为 nn 的只含字符 0 和字符 1 的字符串。规定这个字符串的首字符是第一个字符,即下标从 11 开始。
给定一个范围 [l,~r][l, r],伤害为伤害串的这个范围内中字符 1 的个数
会修改伤害串中的数值,修改的方法是把 [l,~r][l, r] 中所有原来的字符 0 变成 1,将 1 变成 0。
AKN 想知道一些时刻的伤害,请你帮助他求出这个伤害。
输入格式
输入的第一行有两个用空格隔开的整数,分别表示伤害串的长度 nn,和操作的个数 mm。
输入第二行是一个长度为 nn 的字符串 SS,代表伤害串。
第 33 到第 (m + 2)(m+2) 行,每行有三个用空格隔开的整数 op, l, rop,l,r。代表第 ii 次操作的方式和区间,规则是:
若 op = 0op=0,则表示将伤害串的 [l,~r][l, r] 区间内的 0 变成 1,1 变成 0。
若 op = 1op=1,则表示询问伤害串的 [l,~r][l, r] 区间内有多少个字符 1。
输出格式
对于每次询问,输出一行一个整数,代表区间内 1 的个数。
输入输出样例
输入 #1 复制
10 6
1011101001
0 2 4
1 1 5
0 3 7
1 1 10
0 1 4
1 2 6
输出 #1 复制
3
6
1
说明/提示
样例输入输出 11 解释
原伤害串为 1011101001。
对于第一次操作,改变 [2,~4][2, 4] 的字符,伤害串变为 1100101001。
对于第二次操作,查询 [1,~5][1, 5] 内 1 的个数,共有 33 个。
对于第三次操作,改变 [3,~7][3, 7] 的字符,伤害串变为 1111010001。
对于第四次操作,查询 [1,~10][1, 10] 内 1 的个数,共有 66 个。
对于第五次操作,改变 [1,~4][1, 4] 的字符,伤害串变为 0000010001。
对于第六次操作,查询 [2,~6][2, 6] 内 1 的个数,共有 11 个。
数据范围与约定
对于 10%10% 的数据,保证 n, m \leq 10n,m≤10。
另有 30%30% 的数据,保证 n, m \leq 2 \times 10^3n,m≤2×10
3
。
对于 100%100% 的数据,保证 2 \leq n, m \leq 2 \times 10^52≤n,m≤2×10
5
,0 \leq op \leq 10≤op≤1,1 \leq l \leq r \leq n1≤l≤r≤n,SS 中只含字符 0 和字符 1。
思路
线段树模板修改一下,区间修改用异或1
#include<iostream>
#include<cstdio>
#include<cstdio>
using namespace std;
typedef long long ll;
struct node{
int l,r;
ll data,lz;
}tree[4000010];
void build(int l,int r,int now)
{
tree[now].l=l;tree[now].r=r;tree[now].lz=0;
if(l==r)
{
scanf("%1d",&tree[now].data);
return;
}
int mid=(l+r)>>1;
build(l,mid,now*2);
build(mid+1,r,now*2+1);
tree[now].data=tree[now*2].data+tree[now*2+1].data;
}
void pushdown(int x,int l)
{
if(tree[x].lz)
{
tree[x*2].lz^=1;
tree[x*2+1].lz^=1;
tree[x*2].data=(l-l/2)-tree[x*2].data;
tree[x*2+1].data=l/2-tree[x*2+1].data;
tree[x].lz=0;
}
}
void update(int l,int r,int now)
{
if(tree[now].l>=l&&tree[now].r<=r)
{
tree[now].data=tree[now].r-tree[now].l+1-tree[now].data;
tree[now].lz^=1;
return;
}pushdown(now,tree[now].r-tree[now].l+1);
if(tree[now*2].r>=l)update(l,r,now*2);
if(tree[now*2+1].l<=r)update(l,r,now*2+1);
tree[now].data=tree[now*2].data+tree[now*2+1].data;
}
ll get_sum(int l,int r,int now)
{
if(tree[now].l>=l&&tree[now].r<=r)
{
return tree[now].data;
}
pushdown(now,tree[now].r-tree[now].l+1);
ll ans=0;
if(tree[now*2].r>=l)ans=ans+get_sum(l,r,now*2);
if(tree[now*2+1].l<=r)ans=ans+get_sum(l,r,now*2+1);
return ans;
}
int main()
{
int n,m,x,y,k,t;
scanf("%d%d",&n,&m);
build(1,n,1);
while(m--)
{
scanf("%d%d%d",&t,&x,&y);
if(t==0)
{
update(x,y,1);
}
else
{
printf("%lld\n",get_sum(x,y,1));
}
}
return 0;
}