Hadoop架构再探讨——MapReduce的设计改进(新一代资源管理调度框架YARN)

 
 
 

MapReduce 1.0的缺陷

MapReduce 1.0体系结构(复习)

  • JobTracker —— 监控TaskTracker的健康情况
    跟踪任务的执行进度、资源使用等,并将这些信息告诉TaskScheduler调度器
  • TaskTracker —— 周期性向JobTracker发送心跳
    接收JobTracker发送的命令,并执行相应的操作(启动任务、杀死任务等)
    使用slot等量划分本节点的资源量(CPU、内存等)
    补充:划分出Map slot + Reduce slot

MapReduce 1.0的缺陷

  1. 存在单点故障
  2. JobTacker大包大揽,导致任务过重(因此固定上限为4000个节点)
  3. 容易出现内存溢出(分配时只考虑了MapReduce任务数,并未考虑CPU、内存
  4. 资源划分不合理(强制划分slot——Map slot + Reduce slot)

 
 
 

YARN设计思路

理解(⭐️)

  • MapReduce既是一个计算框架,也是一个资源管理调度框架
  • 我们不妨把MapReduce1.0中的资源管理调度功能,单独分出来——这就是Yarn
  • Yarn不再是一个计算框架,而是一个纯粹的资源管理调度框架
  • 被剥夺了资源管理调度功能的MapReduce框架,就变成了MapReduce2.0——一个纯粹的计算框架;由Yarn为其提供资源管理调度服务

图解

在这里插入图片描述

 
 
 

YARN体系结构

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值