【数据结构】最小生成树问题(Prim算法和Kruskal算法)

相关概念

连通图与它的生成树

连通图的生成树是包含图中全部顶点的一个极小连通子图。若图的顶点数为n,则它的生成树含有n-1条边。一个连通图可能拥有多个生成树。

最小生成树(Minimum-Spanning-Tree,MST)

对于一个带权连通无向图,它的生成树中边权之和最小的那一个,称为最小生成树。

一个连通图的最小生成树是不唯一的。边权值之和唯一,但树的形状不唯一。

 
接下来介绍的Prim算法和Kruskal算法,都是基于贪心算法的。

 
 

Prim算法

核心思路

此算法又称为“加点法”,每次遍历选择权最小的边对应的点,加入到最小生成树中;然后尝试更新剩余的点到最小生成树的最小边权。算法从某个顶点开始,直到最小生成树有n个顶点为止。

算法图解

在这里插入图片描述

伪码实现

void Prim(Graph) {
   
	Tree =;		// 初始化空树
	Tree.add(v);	// 添加任意顶点
	minCost
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值