洛谷 P1140 相似基因 题解(dp)

原文链接

这篇题解原是我的第一篇题解。随着我对 dp 了解更加深入,题解要求更加严格,我决定于2020年1月19日进行一次大更新。

一、题目分析

1.dp 基本思路

就我做过的近百道黄绿难度的 dp 来说,dp 题基本这么几个步骤:

  1. 定义状态。
  2. 写出状态转移式。
  3. 根据状态转移式找出递推顺序。
  4. 处理递推的边界。
  5. 找出结果。

我讲解时不会就题论题,而是讲大部分黄绿难度的 dp 题的方法。

当然,dp 题十分灵活,不会看完这篇题解就会做,关键在于大量的练习。

2.状态定义

定义状态是 dp 最重要的步骤之一,状态定义得不好后面全都无法进行。

像这种线性动态规划,定义经常是“ f i f_i fi 表示前 i i i 个满足要求时的答案”。

因为这道题有两个串,很容易想到状态的定义是“ f i , j f_{i,j} fi,j 表示 a a a 串的前 i i i 个碱基和 b b b 串的前 j j j 个碱基的相似度”。

3.转移式

通常定义出状态之后转移式就十分好写了。转移式通常只需要考虑最后一点,比如这道题只用考虑最后一对碱基。

最后一对碱基只有以下3种可能:

  1. 非空碱基和非空碱基。
  2. 非空碱基和空碱基。
  3. 空碱基和非空碱基。

注:空碱基和空碱基不能匹配。

去掉最后一对碱基,转化成规模更小的同样的问题,就是转移式的意义。易得如下转移式:
f i , j = m a x ( f i − 1 , j − 1 + d a i , b j , f i − 1 , j + d a i , 5 , f i , j − 1 + d b j , 5 ) \Large{\color{black}{f_{i,j}=max(}\color{red}{f_{i-1,j-1}+d_{a_{i},b_{j}}},\color{green}{f_{i-1,j}+d_{a_{i},5}},\color{blue}{f_{i,j-1}+d_{b_{j},5}}\color{black}{)}} fi,j=max(fi1,j1+dai,bj,fi1,j+dai,5,fi,j1+dbj,5)
其中 d i , j d_{i,j} di,j 表示编号为 i i i 的碱基和编号为 j j j 的碱基的相似程度,编号为5的是空碱基, a i a_{i} ai 表示第一个基因的第 i i i 个碱基, b b b 表示第二个基因的第 i i i 个碱基。

其中红色代表第一种情况的转移,绿色代表第二种,蓝色代表第三种。

如果还不能明白,就看下面的图吧:

4.递推顺序

这步通常挺简单的,看看下标是变大还是变小。如果你要滚动数组的话(这题好像不能用滚动数组),递推顺序就会难一些。

显然,转移时下标不会变大,为了无后效性,应该从小到大递推。至于先枚举 i i i 还是 j j j,并不重要。

5.边界

递推顺序找到,边界就很容易找到了。

既然下标都是不变或变小,那边界就是至少有一个下标为0。如果一个下标为0,另一个下标不为0,上面3种转移只有一种有效,即:
f i , 0 = f i − 1 , 0 + d a i , 5 \LARGE{f_{i,0}=f_{i-1,0}+d_{a_{i},5}} fi,0=fi1,0+dai,5
f 0 , i = f 0 , i − 1 + d 5 , b i \LARGE{f_{0,i}=f_{0,i-1}+d_{5,b_{i}}} f0,i=f0,i1+d5,bi
如果两个下标都为0,也就是 f 0 , 0 f_{0,0} f0,0,三个转移都会失效。我们应该按照定义赋给它值:0个碱基和0个碱基的相似度应为0。所以得到最后一个式子:
f 0 , 0 = 0 \Huge{f_{0,0}=0} f0,0=0

6.结果

这道题的结果很好找,就是 f l a , l b f_{l_a,l_b} fla,lb l a l_a la l b l_b lb分别代表 a a a 的长度和 b b b 的长度),但是有些题的结果还得在多个数中找,比较麻烦。

7.实现

5个步骤的思维顺序如上,但是代码顺序略有不同,大概是这样的:

  1. 状态定义。
  2. 输入。
  3. 递推边界。
  4. 递推顺序。
  5. 状态转移式。
  6. 找出结果。

我经常在找出转移式后就迫不及待地写,结果代码中第二步就不行了,只能边写边想,最后代码十分混乱,bug 也不好找。所以最好把5个步骤做完再写代码。

二、代码

#include<iostream>
#include<algorithm>
using namespace std;
int la,lb,a[110],b[110],f[110][110];//状态定义
int d[6][6]=
{
	{0,0,0,0,0,0},
	{0,5,-1,-2,-1,-3},
	{0,-1,5,-3,-2,-4},
	{0,-2,-3,5,-2,-2},
	{0,-1,-2,-2,5,-1},
	{0,-3,-4,-2,-1,0}
};
int main()
{
	//开始输入 
	cin>>la;
	for(int i=1;i<=la;i++)
	{
		char t;
		cin>>t;
		switch(t)
		{
		case'A':
			a[i]=1;break;
		case'C':
			a[i]=2;break;
		case'G':
			a[i]=3;break;
		case'T':
			a[i]=4;break;
		}
	}
	cin>>lb;
	for(int i=1;i<=lb;i++)
	{
		char t;
		cin>>t;
		switch(t)
		{
		case'A':
			b[i]=1;break;
		case'C':
			b[i]=2;break;
		case'G':
			b[i]=3;break;
		case'T':
			b[i]=4;break;
		}
	}
	//输入结束 
	
	//开始处理边界 
	f[0][0]=0;//全局变量自动初始化为0,但是作为题解,还是写上好。
	for(int i=1;i<=la;i++)
		f[i][0]=f[i-1][0]+d[a[i]][5];
	for(int i=1;i<=lb;i++)
		f[0][i]=f[0][i-1]+d[5][b[i]];
	//边界处理结束
	
	//开始 dp
	for(int i=1;i<=la;i++)
		for(int j=1;j<=lb;j++)
			f[i][j]=max(f[i-1][j-1]+d[a[i]][b[j]],max(f[i-1][j]+d[a[i]][5],f[i][j-1]+d[5][b[j]]));
	//dp 结束 
	
	//开始输出结果 
	cout<<f[la][lb]<<endl;
	//输出结果结束
	return 0;
}

最后,看完记得回到题解那点个赞 QwQ。

分割线____

看完这篇题解收益颇多,值得多看几遍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值