前言:这两个题目基本类似就直接放在一篇博客
知识
(a/b)%p=(ainv[b])%p; =》 (a1/b1+a2/b2)%p=(a1inv[b1]+a2*inv[b2])%p
算概率
题目描述
代码
#include<cstdio>
using namespace std;
const int mod=1e9+7;
const int maxn=2e3+5;
int n,a[maxn];
long long dp[maxn][maxn];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
dp[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=0;j<=i;j++){
dp[i][j]=(dp[i-1][j]*(mod+1-a[i])+dp[i-1][j-1]*a[i])%mod;
}
}
for(int i=0;i<=n;i++){
printf("%lld%c",dp[n][i],i==n?'\n':' ');
}
return 0;
}
pph的篮球考试
题目思路
首先看到题目以为是要用组合数学,还有最小公倍数什么的而且还有逆元看了一会之后直接弃题。
事实证明我还是too young
首先没必要把概率求出来再求逆元,直接用逆元就好,这样直接对最小公倍数什么的就无关了
其次dp还是容易想最开始我想的是dp[ i ][ j ]前 i 个里面有 j 个中了
但是观察题目卡内存所以要滚动。后面变成dp[j] 表示有j个进的球。内存还是大了
仔细思考其实可以发现可以设dp [ j ]为有j的不进,那么数组一下就满足了条件
代码
#include<cstdio>
#include<algorithm>
using namespace std;
const int mod=998244353;
const int maxn=1e6+5;
int n,a[maxn];
long long dp1[6],dp2[6];//滚动
int extgcd(int a,int b,int &x,int &y){//扩偶
int d=a;
if(b!=0){
extgcd(b,a%b,y,x);
y-=(a/b)*x;
}else{
x=1,y=0;
}
return d;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
int x,y;
extgcd(a[i],mod,x,y);
a[i]=(mod+x%mod)%mod;//逆元
}
dp1[0]=1;//初始化
for(int i=1;i<=n;i++){
dp2[0]=(dp1[0]*a[i])%mod;
dp2[1]=(dp1[1]*a[i]+dp1[0]*(mod+1-a[i]))%mod;
dp2[2]=(dp1[2]*a[i]+dp1[1]*(mod+1-a[i]))%mod;
dp2[3]=(dp1[3]*a[i]+dp1[2]*(mod+1-a[i]))%mod;
dp2[4]=(dp1[4]*a[i]+dp1[3]*(mod+1-a[i]))%mod;
dp2[5]=(dp1[5]*a[i]+dp1[4]*(mod+1-a[i]))%mod;
swap(dp1,dp2);
}
for(int i=0;i<=5;i++){
printf("%lld%c",dp1[i],i==5?'\n':' ');
}
return 0;
}