概率问题

1. 雇佣问题

  • 问题描述:一个岗位雇佣员工,如果面试人员比当前员工优秀,则该人员被雇佣而替换当前员工,如何在一系列随机的 n n n个面试人员中以较少的雇佣次数挑选较好的员工?
  • 分析:设 X X X为雇佣总次数, X i X_i Xi为第 i i i个人员是否被雇佣的指示器,即
    X i = { 1 如果第 i 个人员被雇佣 0 如果第 i 个人员未被雇佣 X_i=\left\{\begin{array}{ll} 1 & \textrm{如果第$i$个人员被雇佣}\\ 0 & \textrm{如果第$i$个人员未被雇佣} \end{array}\right. Xi={10如果第i个人员被雇佣如果第i个人员未被雇佣
    则有 X = X 1 + X 2 + ⋯ + X n X=X_1+X_2+\cdots+ X_n X=X1+X2++Xn。由于 E [ X i ] = 1 ⋅ P { X i = 1 } + 0 ⋅ P { X i = 0 } = P { X i = 1 } E[X_i]=1\cdot P\{X_i=1\}+0\cdot P\{X_i=0\}=P\{X_i=1\} E[Xi]=1P{Xi=1}+0P{Xi=0}=P{Xi=1},而人员 i i i比前 i − 1 i-1 i1个人员优秀的概率为 1 / i 1/i 1/i,即 E [ X i ] = P { X i = 1 } = 1 / i E[X_i]=P\{X_i=1\}=1/i E[Xi]=P{Xi=1}=1/i,从而
    E [ X ] = E [ ∑ i = 1 n X i ] = ∑ i = 1 n E [ X i ] = ∑ i = 1 n 1 / i = ∫ 1 n d x x + O ( 1 ) = ln ⁡ n + O ( 1 ) \begin{aligned} E[X]&=E\left[\sum_{i=1}^{n}X_i\right]=\sum_{i=1}^{n}E[X_i]\\ & = \sum_{i=1}^{n}1/i =\int_1^n\frac{dx}{x} + O(1)=\ln n+O(1) \end{aligned} E[X]=E[i=1nXi]=i=1nE[Xi]=i=1n1/i=1nxdx+O(1)=lnn+O(1)
    可见面试 n n n个人平均只雇佣其中的 ln ⁡ n \ln n lnn个人。调和级数 1 + 1 2 + ⋯ + 1 n = ln ⁡ n + O ( 1 ) \displaystyle1+\frac{1}{2}+\cdots+\frac{1}{n}=\ln n +O(1) 1+21++n1=lnn+O(1) O ( 1 ) O(1) O(1)称为欧拉常数。

2. 生日悖论

  • 问题描述1:房间有多少人可以使两人生日相同的概率达到50%?

  • 分析:计算 k k k个人生日互不相同的概率。 n = 365 n=365 n=365
    P = 1 ⋅ ( n − 1 n ) ⋅ ( n − 2 n ) ⋯ ( n − k + 1 n ) = 1 ⋅ ( 1 − 1 n ) ⋅ ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) ≤ 1 ⋅ e − 1 n ⋅ e − 2 n ⋯ e − k − 1 n = e − ∑ i = 1 k − 1 i / n = e − k ( k − 1 ) 2 n \begin{aligned} P&=1\cdot \left(\frac{n-1}{n}\right)\cdot \left(\frac{n-2}{n}\right)\cdots \left(\frac{n-k+1}{n}\right)\\ &=1\cdot \left(1-\frac{1}{n}\right)\cdot \left(1-\frac{2}{n}\right)\cdots \left(1-\frac{k-1}{n}\right)\\ &\le 1\cdot e^{-\frac{1}{n}}\cdot e^{-\frac{2}{n}}\cdots e^{-\frac{k-1}{n}}\\ &=e^{-\sum_{i=1}^{k-1}i/n}=e^{-\frac{k(k-1)}{2n}} \end{aligned} P=1(nn1)(nn2)(nnk+1)=1(1n1)(1n2)(1nk1)1en1en2enk1=ei=1k1i/n=e2nk(k1)
    其中 1 + x ≤ e x 1+x\le e^x 1+xex。令 P ≤ 1 / 2 P\le1/2 P1/2,得到 k ≥ 23 k\ge 23 k23

  • 问题描述2:一共多少人可以期望至少有一对人生日相同?

  • 分析:设 X X X为相同生日的两人对数目, X i j X_{ij} Xij为第 i i i个人和第 j j j个人生日是否相同的指示器,即
    X i j = { 1 第 i 个人和第 j 个人生日相同 0 第 i 个人和第 j 个人生日不相同 X_{ij}=\left\{\begin{array}{ll} 1 & \textrm{第$i$个人和第$j$个人生日相同}\\ 0 & \textrm{第$i$个人和第$j$个人生日不相同} \end{array}\right. Xij={10i个人和第j个人生日相同i个人和第j个人生日不相同
    则有 X = ∑ i = 1 k ∑ j = i + 1 k X i j X=\displaystyle\sum_{i=1}^{k}\sum_{j=i+1}^{k}X_{ij} X=i=1kj=i+1kXij。而 E [ X i j ] = 1 / n E[X_{ij}]=1/n E[Xij]=1/n,取期望得
    E [ X ] = E [ ∑ i = 1 k ∑ j = i + 1 k X i j ] = ∑ i = 1 k ∑ j = i + 1 k E [ X i j ] = k ( k − 1 ) 2 ⋅ 1 n E[X]=E\left[\displaystyle\sum_{i=1}^{k}\sum_{j=i+1}^{k}X_{ij}\right]=\displaystyle\sum_{i=1}^{k}\sum_{j=i+1}^{k}E[X_{ij}]=\frac{k(k-1)}{2}\cdot\frac{1}{n} E[X]=E[i=1kj=i+1kXij]=i=1kj=i+1kE[Xij]=2k(k1)n1
    因此,要让 E [ X ] ≥ 1 E[X]\ge 1 E[X]1,需要 k ≥ 28 k\ge 28 k28

3. 球与盒子

  • 问题描述1:把相同的 n n n个球随机投入 b b b个盒子中,球落在任意一个盒子的概率为 1 / b 1/b 1/b(伯努利实验,成功的概率为 1 / b 1/b 1/b,失败为 ( b − 1 ) / b (b-1)/b (b1)/b),平均有多少球落在第一个盒子里?

  • 分析:落在第一个盒子的球数服从二项分布,因此落在第一个盒子的平均球数为 n / b n/b n/b

  • 问题描述2:第一个盒子至少有一个球之前平均要投多少球?

  • 分析:投球个数服从几何分布,投入第一个盒子的概率为 1 / b 1/b 1/b,那么期望为 1 / ( 1 / b ) = b 1/(1/b)=b 1/(1/b)=b

  • 问题描述3:在每个盒子里至少有一个球之前,平均要投多少球?

  • 分析:设 X X X为投球总次数,可以将 X X X划分为 b b b个阶段,第 i i i个阶段需要投中一个空盒才可以进入下一个阶段, X i X_i Xi为第 i i i阶段直到投中一个空盒的次数,即 X i X_i Xi服从几何分布,投中空盒的概率为 ( b − i + 1 ) / b (b-i+1)/b (bi+1)/b,则期望 E [ X i ] = b / ( b − i + 1 ) E[X_i]=b/(b-i+1) E[Xi]=b/(bi+1)。由于 X = ∑ i = 1 b X i X=\displaystyle\sum_{i=1}^{b}X_i X=i=1bXi,取期望
    E [ X ] = E [ ∑ i = 1 b X i ] = ∑ i = 1 b E [ X i ] = ∑ i = 1 b b b − i + 1 = b ∑ i = 1 b 1 i = b ( ln ⁡ b + O ( 1 ) ) ≈ b ln ⁡ b E[X]=\displaystyle E\left[\sum_{i=1}^{b}X_i\right]=\sum_{i=1}^{b}E[X_i]=\sum_{i=1}^{b}\frac{b}{b-i+1}=b\sum_{i=1}^{b}\frac{1}{i}=b(\ln b+O(1))\approx b\ln b E[X]=E[i=1bXi]=i=1bE[Xi]=i=1bbi+1b=bi=1bi1=b(lnb+O(1))blnb

4. 序列

  • 问题描述:抛一枚均匀硬币 n n n次,平均连续正面的最长序列为多长?
  • 分析:长度为 Θ ( lg ⁡ n ) \Theta(\lg n) Θ(lgn)。最长序列至少为 r ⌈ lg ⁡ n ⌉ r\lceil\lg n\rceil rlgn的概率至多是 1 / n r − 1 1/n^{r-1} 1/nr1。例如对于 n = 1000 n=1000 n=1000,出现一系列最少 2 ⌈ lg ⁡ n ⌉ = 20 2\lceil\lg n\rceil=20 2lgn=20次正面的概率至多是 1 / n 2 − 1 = 1 / 1000 1/n^{2-1}=1/1000 1/n21=1/1000,出现一系列最少 3 ⌈ lg ⁡ n ⌉ = 30 3\lceil\lg n\rceil=30 3lgn=30次正面的概率至多是 1 / n 3 − 1 = 1 / 1   000   000 1/n^{3-1}=1/1\ 000\ 000 1/n31=1/1 000 000

5. 抛硬币

  • 问题描述1:不均匀的硬币正面概率 3 / 4 3/4 3/4,反面 1 / 4 1/4 1/4,同时抛两枚这样的硬币,在第一次出现两个正面的情况之前,平均要抛多少次?

  • 分析:抛掷次数服从几何分布,成功出现两个正面的概率为 3 / 4 ⋅ 3 / 4 = 9 / 16 3/4\cdot3/4=9/16 3/43/4=9/16,那么抛掷次数期望为 1 / ( 9 / 16 ) = 16 / 9 1/(9/16)=16/9 1/(9/16)=16/9次。

  • 问题描述2:不均匀的硬币正面概率 3 / 4 3/4 3/4,反面 1 / 4 1/4 1/4,持续抛一枚这样的硬币,在第一次连续出现两个正面的情况之前,平均要抛多少次?

  • 分析:这是一个可以用马尔可夫链解决的问题。在得到两个正面HH的过程中,一共有null,H,HH三个状态,一步状态转移概率矩阵为
    [ 1 / 4 3 / 4 0 1 / 4 0 3 / 4 0 0 1 ] \left[\begin{array}{ccc} 1/4 & 3/4 & 0\\ 1/4 & 0 & 3/4\\ 0 & 0 & 1 \end{array}\right] 1/41/403/40003/41
    定义等待时间 T s T_{s} Ts为从起始状态s达到 T H H T_{HH} THH状态所需抛掷硬币的次数,使用对下一步取条件的方法,列写方程为
    [ T n u l l T H T H H ] = [ 1 1 0 ] + [ 1 / 4 3 / 4 0 1 / 4 0 3 / 4 0 0 1 ] [ T n u l l T H 0 ] \left[\begin{array}{c}T_{null} \\ T_{H} \\ T_{HH}\end{array}\right]= \left[\begin{array}{c}1 \\ 1 \\ 0\end{array}\right]+ \left[\begin{array}{ccc} 1/4 & 3/4 & 0\\ 1/4 & 0 & 3/4\\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c}T_{null} \\ T_{H} \\ 0\end{array}\right]\\ TnullTHTHH=110+1/41/403/40003/41TnullTH0
    解得 T n u l l = 28 / 9 T_{null}=28/9 Tnull=28/9,取期望 E [ T n u l l ] = 28 / 9 E[T_{null}]=28/9 E[Tnull]=28/9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值