机器学习距离度量介绍

目录:

  • 欧式距离
  • 曼哈顿距离
  • 切比雪夫距离
  • 闵可夫斯基距离
  • 标准化欧氏距离
  • 余弦距离
  • 汉明距离
  • 杰卡德距离
  • 马氏距离

1.欧式距离(Euclidean Distance):

欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。
在这里插入图片描述

2.曼哈顿距离(Manhattan Distance):

在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。
在这里插入图片描述
在这里插入图片描述

3.切比雪夫距离 (Chebyshev Distance):

在这里插入图片描述
在这里插入图片描述

4.闵可夫斯基距离(Minkowski Distance):

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

在这里插入图片描述
其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

小结:

1 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点:

e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

2 闵氏距离的缺点:

​ (1)将各个分量的量纲(scale),也就是“单位”相同的看待了;

​ (2)未考虑各个分量的分布(期望,方差等)可能是不同的。


5.标准化欧氏距离 (Standardized EuclideanDistance):

标准化欧氏距离是针对欧氏距离的缺点而作的一种改进。

思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。

在这里插入图片描述
在这里插入图片描述

如果将方差的倒数看成一个权重,也可称之为加权欧氏距离(Weighted Euclidean distance)。

6.余弦距离(Cosine Distance)

几何中,夹角余弦可用来衡量两个向量方向的差异;机器学习中,借用这一概念来衡量样本向量之间的差异。

  • 二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:
    在这里插入图片描述

  • 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦为:

在这里插入图片描述
即:
在这里插入图片描述
夹角余弦取值范围为[-1,1]。余弦越大表示两个向量的夹角越小,余弦越小表示两向量的夹角越大。当两个向量的方向重合时余弦取最大值1,当两个向量的方向完全相反余弦取最小值-1。

7.汉明距离(Hamming Distance)

两个等长字符串s1与s2的汉明距离为:将其中一个变为另外一个所需要作的最小字符替换次数。

例如:

  The Hamming distance between "1011101" and "1001001" is 2. 
  The Hamming distance between "2143896" and "2233796" is 3. 
  The Hamming distance between "toned" and "roses" is 3.

在这里插入图片描述
**汉明重量:**是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。因此,如果向量空间中的元素a和b之间的汉明距离等于它们汉明重量的差a-b。

应用:汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。比如在信息编码过程中,为了增强容错性,应使得编码间的最小汉明距离尽可能大。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。

举例:

X=[[0,1,1],[1,1,2],[1,5,2]]
注:以下计算方式中,把2个向量之间的汉明距离定义为2个向量不同的分量所占的百分比。

经计算得:
d =   0.6667    1.0000    0.3333

8.杰卡德距离(Jaccard Distance)

杰卡德相似系数(Jaccard similarity coefficient):两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示:
在这里插入图片描述
杰卡德距离(Jaccard Distance):与杰卡德相似系数相反,用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度:
在这里插入图片描述

9. 马氏距离(Mahalanobis Distance)

下图有两个正态分布图,它们的均值分别为a和b,但方差不一样,则图中的A点离哪个总体更近?或者说A有更大的概率属于谁?显然,A离左边的更近,A属于左边总体的概率更大,尽管A与a的欧式距离远一些。这就是马氏距离的直观解释。
在这里插入图片描述
马氏距离是基于样本分布的一种距离。

马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离。它是一种有效的计算两个位置样本集的相似度的方法。

与欧式距离不同的是,它考虑到各种特性之间的联系,即独立于测量尺度。

马氏距离定义:设总体G为m维总体(考察m个指标),均值向量为μ=(μ1,μ2,… …,μm,)`,协方差阵为∑=(σij),

则样本X=(X1,X2,… …,Xm,)`与总体G的马氏距离定义为:
在这里插入图片描述
马氏距离特性:

1.量纲无关,排除变量之间的相关性的干扰;

2.马氏距离的计算是建立在总体样本的基础上的,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;

3 .计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。

4.还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6),(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。
欧式距离&马氏距离:
在这里插入图片描述

举例:

已知有两个类G1和G2,比如G1是设备A生产的产品,G2是设备B生产的同类产品。设备A的产品质量高(如考察指标为耐磨度X),其平均耐磨度μ1=80,反映设备精度的方差σ2(1)=0.25;设备B的产品质量稍差,其平均耐磨损度μ2=75,反映设备精度的方差σ2(2)=4.

今有一产品G0,测的耐磨损度X0=78,试判断该产品是哪一台设备生产的?

直观地看,X0与μ1(设备A)的绝对距离近些,按距离最近的原则,是否应把该产品判断设备A生产的?

考虑一种相对于分散性的距离,记X0与G1,G2的相对距离为d1,d2,则:
在这里插入图片描述
因为d2=1.5 < d1=4,按这种距离准则,应判断X0为设备B生产的。

设备B生产的产品质量较分散,出现X0为78的可能性较大;而设备A生产的产品质量较集中,出现X0为78的可能性较小。

这种相对于分散性的距离判断就是马氏距离。
在这里插入图片描述

小结

1.欧式距离(Euclidean Distance):
通过距离平方值进行计算
2.曼哈顿距离(Manhattan Distance):
通过距离的绝对值进行计算
3.切比雪夫距离 (Chebyshev Distance):
维度的最大值进行计算
4.闵可夫斯基距离(Minkowski Distance):
当p=1时,就是曼哈顿距离;
当p=2时,就是欧氏距离;
当p→∞时,就是切比雪夫距离。
前四个距离公式小结:前面四个距离公式都是把单位相同看待了,所以计算过程不是很科学
5.标准化欧氏距离 (Standardized EuclideanDistance):
在计算过程中添加了标准差,对量刚数据进行处理
6.余弦距离(Cosine Distance):
通过cos思想完成
7.汉明距离(Hamming Distance):
一个字符串到另一个字符串需要变换几个字母,进行统计
8.杰卡德距离(Jaccard Distance):
通过交并集进行统计
9.马氏距离(Mahalanobis Distance)
通过样本分布进行计算

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值