概率论基础知识补充

本文介绍了概率论中的关键概念,包括样本概率、先验概率、条件概率、后验概率、全概率公式及其应用,以及贝叶斯公式和乘法公式。这些概念在统计学和机器学习中至关重要,用于处理不确定性问题和数据分析。
摘要由CSDN通过智能技术生成

概率论基础知识

  • 样本概率:P(x)表示样本x出现的概率,也就是在全体样本中出现的概率
  • 先验概率:对于多类问题,类别状态 ω i \omega_i ωi出现的概率, P ( ω i ) P{\left(\omega_i\right)} P(ωi)
  • 条件概率:在类别 ω l \omega_l ωl中,样本 x x x出现的概率,称为条件概率 P ( x ∣ ω i ) P(\mathbf{x}|\omega_i) P(xωi)
  • 后验概率:对于样本 x x x,其来自于类别 ω l \omega_l ωl的概率, 称为后验概率 P ( ω i ∣ x ) P(\omega_i|\mathbf{x}) P(ωix)
  • 全概率 P ( A ) = ∑ i = 1 n P ( A , B i ) P(A)=\sum_{i=1}^nP(A,B_i) P(A)=i=1nP(A,Bi)又因为条件概率公式,可进一步 P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^nP(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)

全概率公式的意义在于,当某一事件的概率难以求得时,可转化为在一系列条件下发生概率的和
在这里插入图片描述

条件概率

P(A|B)=P(AB)/P(B) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) \frac{ P(B|A)\cdot P(A) }{ P(B)} P(B)P(BA)P(A)
乘法公式

  • 若P(B)>0,则P(AB) = P(B)P(A|B)
  • 若P(A)>0,则P(AB) = P(A)P(B|A)

全概率公式
P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^nP(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)

直接计算P(A)比较困难,则根据B样本空间对事件A进行分割求解
贝叶斯公式
定义:若事件 B 1 , B 2 . . . . . . B n B_1,B_2......B_n B1,B2......Bn是样本空间 α \alpha α的一组分割,且P(A)>0,P( B i B_i Bi)>0,则
P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(AB_i)}{P(A)}=\frac{P(B_i)P(A|B_i)}{P(A)}=\frac{P(B_i)P(A|B_i))}{\sum_{j=1}^{n}P(B_j)P(A|B_j)} P(BiA)=P(A)P(ABi)=P(A)P(Bi)P(ABi)=j=1nP(Bj)P(ABj)P(Bi)P(ABi))
P ( B i ) P(B_i) P(Bi)是先验概率 P ( B i ∣ A ) P(B_i|A) P(BiA)是后验概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼带师小弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值