mnist算法实现(初版)


前言

MNIST是一个广泛用于机器学习和深度学习领域的手写数字图像数据集。它包含了大量的手写数字图片和对应的标签,用于训练和测试图像识别算法。由于其数据规模适中且图像特征清晰,MNIST成为了初学者入门和实践深度学习技术的理想选择。通过训练模型来识别MNIST数据集中的手写数字,可以深入了解神经网络、卷积神经网络等算法的工作原理,为后续的复杂图像识别任务奠定坚实的基础。


一、mnist的下载

如果你是Linux系统可以按照我给的代码运行下载,也可以从官网中下载,链接我贴在下方了

!mkdir dataset
!wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz --output-document=dataset/train-images-idx3-ubyte.gz
!gzip -d dataset/train-images-idx3-ubyte.gz

!wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz --output-document=dataset/train-labels-idx1-ubyte.gz
!gzip -d dataset/train-labels-idx1-ubyte.gz

!wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz --output-document=dataset/t10k-images-idx3-ubyte.gz
!gzip -d dataset/t10k-images-idx3-ubyte.gz

!wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz --output-document=dataset/t10k-labels-idx1-ubyte.gz
!gzip -d dataset/t10k-labels-idx1-ubyte.gz

http://yann.lecun.com/exdb/mnist/ 这是官方的链接

二、数据预处理

1.引入库

其中我们强调一下struct是 Python 的一个内置模块,用于处理二进制数据。它提供了一种方式来打包和解包 C 风格的结构体,这对于与二进制文件、网络协议或底层硬件交互特别有用。struct模块提供了 pack和 unpack这两个主要的函数

import numpy as np
import struct
import random
import matplotlib.pyplot as plt
import pandas as pd
import math

2.读入数据

def load_labels(file):
    with open (file,'rb') as f:
        data = f.read()      
    magic_num,num_sample = struct.unpack('>ii',data[:8])
    if magic_num !=2049:
        print("输入文件错误")
        
    else:
        labels = data[:8]
        return labels
    
    
def load_images(file):
    with open (file,'rb') as f:
        data = f.read()
    magic_number, num_samples, image_width, image_height = struct.unpack(">iiii", data[:16])
    if magic_number !=2051:
        print("输入错误")
        
    else:
        image_data = np.asarray(list(data[16:]), dtype=np.uint8).reshape(num_samples, -1)
        return image_data
    
val_labels = load_labels("dataset/t10k-labels-idx1-ubyte")   #  10000,
val_images = load_images("dataset/t10k-images-idx3-ubyte")   #  10000, 784
numdata = val_images.shape[0] # 60000
val_images = np.hstack((val_images / 255 - 0.5, np.ones((numdata, 1))))   # 10000, 785

train_labels = load_labels("dataset/train-labels-idx1-ubyte") # 60000,
train_images = load_images("dataset/train-images-idx3-ubyte") # 60000, 784
numdata = train_images.shape[0] # 60000
train_images = np.hstack((train_images / 255 - 0.5, np.ones((numdata, 1))))  # 60000, 785
train_images.shape
val_images.shape
    

读入二进制的mnist的文件并且根据magic_number判断是否是正确的文件,>是big-endian,可以判断数字的顺序如下图文件,读取完毕后我们把已经读完的数据进行归一化,便于计算机的计算,最后横向堆叠一行单位向量,数据预处理完成。
在这里插入图片描述

三、数据迭代器

class Dataset:
    def __init__(self, images, labels):
        self.images = images
        self.labels = labels

    def __getitem__(self, index):
        return self.images[index], self.labels[index]

    def __len__(self):
        return len(self.images)


class DataLoaderIterator:
    def __init__(self, dataloader):
        self.dataloader = dataloader
        self.cursor = 0
        self.indexs = list(range(self.dataloader.count_data))  # 0, ... 60000
        if self.dataloader.shuffle:
            # 打乱一下
            random.shuffle(self.indexs)
    # 合并batch的数据
    def merge_to(self, container, b):
        if len(container) == 0:
            for index, data in enumerate(b):
                if isinstance(data, np.ndarray):
                    container.append(data)
                else:
                    container.append(np.array([data], dtype=type(data)))
        else:
            for index, data in enumerate(b):
                container[index] = np.vstack((container[index], data))
        return container
    
    
    def __next__(self):
        if self.cursor >= self.dataloader.count_data:
            raise StopIteration()
            
        batch_data = []
        remain = min(self.dataloader.batch_size, self.dataloader.count_data - self.cursor)  #  256, 128
        for n in range(remain):
            index = self.indexs[self.cursor]
            data = self.dataloader.dataset[index]
            batch_data = self.merge_to(batch_data, data)
            self.cursor += 1
        return batch_data
              
            
class DataLoader:
    def __init__(self, dataset, batch_size, shuffle):
        self.dataset = dataset
        self.shuffle = shuffle
        self.count_data = len(dataset)
        self.batch_size = batch_size
    def __iter__(self):
        return DataLoaderIterator(self)
        

这段代码定义了三个类:Dataset、DataLoaderIterator和DataLoader,它们共同构成了一个简单的数据加载和批处理框架。Dataset类用于存储图像和对应的标签;DataLoaderIterator类作为迭代器,用于按批次从数据集中提取数据,并可以在需要时打乱数据顺序;DataLoader类则负责创建和管理DataLoaderIterator,len(self.images)返回的是images的长度,merge_to对data加到batch_size里面并且判断是否为numpy形式。cursor 是个浮动标签用于检验batch_size所需要的大小。

模型的运用

设定学习率及各种辅助函数

def estimate(plabel, gt_labels, classes):
    plabel = plabel.copy()
    gt_labels = gt_labels.copy()
    match_mask = plabel == classes
    mismatch_mask = plabel != classes
    plabel[match_mask] = 1
    plabel[mismatch_mask] = 0
    
    gt_mask = gt_labels == classes
    gt_mismatch_mask = gt_labels != classes
    gt_labels[gt_mask] = 1
    gt_labels[gt_mismatch_mask] = 0
    
    TP = sum(plabel & gt_labels)
    FP = sum(plabel & (1 - gt_labels))
    FN = sum((1 - plabel) & gt_labels)
    TN = sum((1 - plabel) & (1 - gt_labels))
    
    precision = TP / (TP + FP)
    recall = TP / (TP + FN)
    accuracy = (TP + TN) / (TP + FP + FN + TN)
    F1 = 2 * (precision * recall) / (precision + recall)
    return precision, recall, accuracy, F1

def estimate_val(images, gt_labels, theta, classes):
    predict = sigmoid(val_images @ theta)
    plabel = predict.argmax(1)
    prob = plabel == val_labels
    total_images = images.shape[0]
    accuracy = sum(prob) / total_images
    return accuracy, cross_entropy(predict, one_hot(gt_labels, classes))

def cross_entropy(predict, gt):
    eps = 1e-4
    predict = np.clip(predict, a_max=1-eps, a_min=eps)  # 裁切
    batch_size = predict.shape[0]
    return -np.sum(gt * np.log(predict) + (1 - gt) * np.log(1 - predict)) / batch_size

def lr_schedule_cosine(lr_min, lr_max, per_epochs):
    def compute(epoch):
        return lr_min + 0.5 * (lr_max - lr_min) * (1 + np.cos(epoch / per_epochs * np.pi))
    return compute

余弦退火学习率+周期性重启,详情可以参考我之前的文章,cross_entropy计算损失率,estimate来进行评估使用。注:==的优先级大于=

选取模型+模型训练

这段代码实现了一个基本的神经网络训练流程,并通过动态调整学习率来优化训练过程。通过记录和展示训练过程中的损失值和验证性能,我们可以更好地了解模型的训练情况和性能表现。然而,需要注意的是,代码中存在一些未定义的函数和变量(如lr_schedule_cosine、cross_entropy、estimate_val等),这些需要在实际运行代码之前进行定义和实现。注意:if epoch in warm_up_lr 的缩进我之前因为缩进不到位所以程序不能运行。

import matplotlib.pyplot as plt

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

classes = 10                  
batch_size = 512              
lr_warm_up_alpha = 1e-2       
lr_min = 1e-4                 
lr_max = 1e-1                 
epochs = 10                   
numdata, data_dims = train_images.shape  # 60000, 785

train_data = DataLoader(Dataset(train_images, one_hot(train_labels, classes)), batch_size, shuffle=True) 
theta = np.random.normal(size=(data_dims, classes))
iters = 0   
lr_warm_up_schedule = {
    1: 1e-1,
    2: 1
}

cosine_total_epoch = 3    
cosine_itepoch = 0        
lr_cosine_schedule = lr_schedule_cosine(lr_min, lr_max, cosine_total_epoch)  
train_losses = []         
val_losses = []           

for epoch in range(epochs):

    if cosine_itepoch == cosine_total_epoch:
        cosine_itepoch = 0
    
    lr_select = lr_cosine_schedule(cosine_itepoch)

    cosine_itepoch += 1
    
    # 如果当前的迭代次数在warm up计划改变的节点时。就修改warm up的alpha值为当前需要修改的值
    if epoch in lr_warm_up_schedule:
        lr_warm_up_alpha = lr_warm_up_schedule[epoch]
        
    # 定义最终的学习率,是等于cosine学习率 * warm_up_alpha
    lr = lr_select * lr_warm_up_alpha
    print(f"Set learning rate to {lr:.5f}")
    
    # 对一个批次内的数据进行迭代,每一次迭代都是一个batch(即256)
    for index, (images, labels) in enumerate(train_data):

        predict = images @ theta  # n * 785    dot   785  * 10   =  n * 10

        predict = sigmoid(predict)

        loss = cross_entropy(predict, labels)

        d_theta = images.T @ (predict - labels)   #  785xn  dot  nx10  = 785 x 10

        theta = theta - lr * d_theta / batch_size
        iters += 1

        train_losses.append([iters, loss])

        if index % 100 == 0:
            print(f"Iter {iters}. {epoch} / {epochs}, Loss: {loss:.3f}, Learning Rate: {lr:.5f}")
        
    val_accuracy, val_loss = estimate_val(val_images, val_labels, theta, classes)

    val_losses.append([iters, val_accuracy, val_loss])
    print(f"Val set, Accuracy: {val_accuracy}, Loss: {val_loss}")

总结

编写这段代码的历程对我来说是一次深入学习和实践机器学习原理的旅程。从最初对神经网络和梯度下降算法的理解,到逐步掌握学习率调度策略对训练过程的影响,每一步都充满了挑战和收获。在这个过程中,我不仅提升了编程技能,还学会了如何调试和优化模型性能。通过不断尝试和调整,我最终实现了这个包含动态学习率调整功能的神经网络训练代码。
其中这代码有很多需要改进的地方,比如说one_hot那处能否使用别的方法进行代替?是否能使用meanpolling或者softmax的方法
从这code中我学到了,warm_up_lr的方法,关于各种python优先级的思想比如:==优先于=,横向和纵向堆叠data和label,读取二进制文件

warm_up_lr = {
    1:1e-1,
    2:1
}

for i in range(10):
    if i in warm_up_lr:
        print("yes")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值