文章目录
前言
余弦退火学习率与周期性重启是深度学习训练中的两种优化策略,它们被广泛应用于提高模型的训练效果和收敛速度。
一、余弦退火学习率+周期性重启是什么?
余弦退火学习率是一种动态调整学习率的方法,它根据训练过程中的迭代次数,以余弦函数的形式逐渐减小学习率。这种方法可以使得模型在训练初期以较大的学习率快速收敛,而在训练后期以较小的学习率精细调整参数,从而避免过拟合和震荡,提高模型的泛化能力。
周期性重启则是另一种学习率优化策略,它通过在训练过程中定期重置学习率到较高的初始值,来打破训练过程中的局部最优解,并促进模型探索更广泛的参数空间。这种策略可以有效地防止模型过早收敛到次优解,提高模型的最终性能。
η t = η m i n + 1 2 ( η m a x − η m i n ) ( 1 + cos ( T c u r T i π ) ) \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{i}}\pi)) η