余弦退火学习率+周期性重启


前言

余弦退火学习率与周期性重启是深度学习训练中的两种优化策略,它们被广泛应用于提高模型的训练效果和收敛速度。


一、余弦退火学习率+周期性重启是什么?

余弦退火学习率是一种动态调整学习率的方法,它根据训练过程中的迭代次数,以余弦函数的形式逐渐减小学习率。这种方法可以使得模型在训练初期以较大的学习率快速收敛,而在训练后期以较小的学习率精细调整参数,从而避免过拟合和震荡,提高模型的泛化能力。

周期性重启则是另一种学习率优化策略,它通过在训练过程中定期重置学习率到较高的初始值,来打破训练过程中的局部最优解,并促进模型探索更广泛的参数空间。这种策略可以有效地防止模型过早收敛到次优解,提高模型的最终性能。
η t = η m i n + 1 2 ( η m a x − η m i n ) ( 1 + cos ⁡ ( T c u r T i π ) ) \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{i}}\pi)) η

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值