归一码字
码龄5年
关注
提问 私信
  • 博客:17,594
    动态:2
    17,596
    总访问量
  • 53
    原创
  • 58,066
    排名
  • 174
    粉丝
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
  • 毕业院校: 天津理工大学
  • 加入CSDN时间: 2020-01-23
博客简介:

m0_46221545的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    281
    当月
    3
个人成就
  • 获得190次点赞
  • 内容获得9次评论
  • 获得156次收藏
创作历程
  • 53篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    python
  • 开发工具
    pycharm
  • 人工智能
    opencv计算机视觉神经网络视觉检测图像处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

作业2python

进行完debug发现了错误,修改完成。但是token数量用完了。
原创
发布博客 2024.10.31 ·
90 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

作业linux

任务2任务三。
原创
发布博客 2024.10.27 ·
116 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

今天参加kaggle比赛时间序列看见一个预处理比较不错

【代码】今天参加kaggle比赛时间序列看见一个预处理比较不错。
原创
发布博客 2024.10.16 ·
105 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

RetinaFace人脸检测关键点模型

是一种用于人脸识别的深度学习算法,它结合了传统的特征提取方法和现代的深度学习技术,旨在提高人脸识别的准确性和效率。
原创
发布博客 2024.10.12 ·
285 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

rossmann_sales_prediction.ipynb

发布资源 2024.09.26 ·
ipynb

Boruta 的库的初识

我在一个kaggle比赛时间预测中发现Boruta我并不熟悉与是我学习了一下。
原创
发布博客 2024.09.24 ·
384 阅读 ·
4 点赞 ·
1 评论 ·
7 收藏

时间序列LSTM实现

这个代码参考了结合我之前所学的lstm-seq2seq里所学习到的知识对其进行预测test_data = true_data[-int(test_size * len(true_data)):]是在干什么这两行代码的作用是将数据集true_data划分为训练集train_data和测试集test_data。
原创
发布博客 2024.09.24 ·
1209 阅读 ·
27 点赞 ·
0 评论 ·
16 收藏

spark初步探索

今天我阅读了《基于spark下一代机器学习》这本书,里面spark与sql进行了结合,关于传统领域cv,nlp我认为使用大数据处理并不如python处理方便快捷。学习了里面的基础操作,之前学习的spl也可以进行相对的结合。在书中我会使用了XGBoost,LightGBM,等模型,并且学习了大数据经i行数据预处理的方法。
原创
发布博客 2024.09.24 ·
381 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Informer:时间序列预测的新星

在时间序列预测的世界里,传统的模型如ARIMA和LSTM虽然经典,但在处理长序列数据时,往往会遇到效率和准确性的瓶颈。想象一下,如果你需要预测未来几个月甚至几年的数据,而这些数据又非常复杂,传统的模型可能会让你感到力不从心。这时,Informer 模型应运而生,它就像是一位高效的时间旅行者,能够快速而准确地预测未来。
原创
发布博客 2024.09.23 ·
329 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

时间序列预处理

我今天参考了这个1博客写下一些我的理解对缺失值进行填充,是对两个值之间的差进行平均但是时间序列也会有一些误差,比如季节的情况,容易影响,三次指数平滑可以优化这个问题三次指数平滑有累加和累乘两种方法,下面是累加的三次指数平滑​pi=γ(xi-si)+(1-γ)pi-k 其中k为周期累加三次指数平滑的预测公式为: xi+h=si+hti+pi-k+(h mod k) 注意:数据之魅P88此处有错误,根据Wikipedia修正。
原创
发布博客 2024.09.23 ·
464 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

使用云服务器构建langchin

我是用autodl对langchin进行构建,使用ssh服务实例化。
原创
发布博客 2024.09.23 ·
206 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

阅读medusa技术总结

在 LM Head 之后,添加多个解码头(如 Medusa Head 1, Medusa Head 2, ...),每个解码头都是一个用于预测不同位置后续词的前馈网络层(Feed-Forward Layer)。解码头的数量可以根据需要设定,通常为 3-5 个。MEDUSA不同于传统的transformer采取的自回归生成方法,采用了一种类似informer的策略,使用多个解码头来并行生成多个后续词的候选项,这样就不必严格按照逐词顺序生成。这样,通过并行处理,MEDUSA 大大减少了所需的解码步骤数量。
原创
发布博客 2024.09.22 ·
214 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

大模型微调

这是使用知乎评论进行模型微调,让模型输出更加通畅接近人的使用语言这次根据魔塔官方提供的框架学习到开源大模型训练微调全栈,后续我会继续完善模型。
原创
发布博客 2024.08.25 ·
518 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

linux_远程网关连接

创建虚拟机linux,并使用cap进行连接。
原创
发布博客 2024.07.21 ·
130 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

lora 简单代码复现

【代码】lora 简单代码复现。
原创
发布博客 2024.07.17 ·
224 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

torch.cat的用法

是 PyTorch 中用于连接张量的函数,它可以沿着指定的维度(轴)将多个张量连接在一起。
原创
发布博客 2024.07.14 ·
134 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

bert训练的一些技巧(rand() < self.skipgram_prb)

是一个条件表达式,用来判断是否进行skip-gram掩码操作。这种掩码操作通常用于自然语言处理中的数据增强,通过概率决定是否应用skip-gram掩码。
原创
发布博客 2024.07.10 ·
275 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

n-gram 掩码

停止词(如 "the", "is", "in" 等)在很多文本处理任务中没有实际意义,因此可以通过掩码将这些停止词排除在 n-gram 之外。例如,对于句子 "The cat is on the mat",可以掩码掉 "the" 和 "is" 这样的停止词,只生成有意义的 n-gram,如 "cat on", "on the mat"。例如,对于句子 "I have 2 cats.",可以掩码掉数字 "2" 和标点符号 ".",只生成 "I have", "have cats" 这样的 n-gram。
原创
发布博客 2024.07.10 ·
301 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

nlp中tokenizer用法

【代码】nlp中tokenizer用法。
原创
发布博客 2024.07.09 ·
367 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

from functools import partial有什么用

是 Python 的functools模块中的一个非常有用的函数,它用于部分应用一个函数。这意味着你可以创建一个新的函数,这个新函数是原函数的一个子集,即预先填充了原函数的一些参数,并返回这个新函数。这样,当你调用这个新函数时,你只需要提供那些未被预先填充的参数即可。使用:通过预先填充一些参数,你可以轻松地重用同一个函数的不同变体,而无需编写额外的包装函数。:虽然 Python 允许函数参数有默认值,但使用partial可以让你在运行时动态地设置这些默认值,而不是在函数定义时静态地设置。
原创
发布博客 2024.07.09 ·
324 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏
加载更多