追赶法实现

1.追赶法原理

解系数矩阵为对角占优的三对角线方程组
[ b 1 c 1 a 2 b 2 c 2 ⋱ ⋱ ⋱ a n − 1 b n − 1 c n − 1 a n b n ] [ x 1 x 2 ⋮ x n − 1 x n ] = [ f 1 f 2 ⋮ f n − 1 f n ] , \begin{bmatrix} b_1&c_1&&&\\ a_2&b_2&c_2&&\\ &\ddots&\ddots&\ddots&\\ &&a_{n-1}&b_{n-1}&c_{n-1}\\ &&&a_n&b_n \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_{n-1}\\ x_n \end{bmatrix}= \begin{bmatrix} f_1\\ f_2\\ \vdots\\ f_{n-1}\\ f_n \end{bmatrix}, b1a2c1b2c2an1bn1ancn1bnx1x2xn1xn=f1f2fn1fn,
简记为 A x = f . Ax=f. Ax=f.其中,当 ∣ i − j ∣ > 1 |i-j|>1 ij>1时, a i j = 1 , a_{ij}=1, aij=1,且:
∣ b 1 ∣ > ∣ c 1 ∣ > 0 ; | b_1| >| c_1| >0; b1>c1>0;
∣ b i ∣ ≥ ∣ a i ∣ + ∣ c i ∣ , a i , c i ≠ 0 , i = 2 , 3 , … , n − 1 | b_i| \ge |a_i| +|c_i|,a_i,c_i\ne0,i=2,3,\ldots,n-1 biai+ci,ai,ci=0,i=2,3,,n1
∣ b n ∣ > ∣ a n ∣ > 0. | b_n| >| a_n| >0. bn>an>0.
A = [ b 1 c 1 a 2 b 2 c 2 ⋱ ⋱ ⋱ a n − 1 b n − 1 c n − 1 a n b n ] [ α 1 γ 2 α 2 ⋱ ⋱ γ n α n ] = [ 1 β 1 1 ⋱ ⋱ β n − 1 1 ] , A=\begin{bmatrix} b_1&c_1&&&\\ a_2&b_2&c_2&&\\ &\ddots&\ddots&\ddots&\\ &&a_{n-1}&b_{n-1}&c_{n-1}\\ &&&a_n&b_n \end{bmatrix} \begin{bmatrix} \alpha_1&&&\\ \gamma_2&\alpha_2&&\\ &\ddots&\ddots&\\ &&\gamma_n&\alpha_n \end{bmatrix}= \begin{bmatrix} 1&\beta_1&&\\ &1&\ddots&\\ &&\ddots&\beta_{n-1}\\ &&&1 \end{bmatrix}, A=b1a2c1b2c2an1bn1ancn1bnα1γ2α2γnαn=1β11βn11,其中 α i , β i , γ i 为 待 定 系 数 . \alpha_i,\beta_i,\gamma_i为待定系数. αi,βi,γi.
经过分析,求解 A x = f Ax=f Ax=f等价于求解两个三角形方程组:
( 1 ) L y = f , 求 y ; (1)Ly=f,求y; (1)Ly=f,y; ( 2 ) U x = y , 求 x . (2)Ux=y,求x. (2)Ux=y,x.
从而得到解三对角线方程组的追赶法公式:
(1)计算{ β i \beta_i βi}的递推公式
β 1 = c 1 / b 1 , β i = c i / ( b i − α i β i − 1 ) , i = 2 , 3 , … , n − 1 ; \begin{aligned} \beta_1&=c_1/b_1,\\ \beta_i&=c_i/(b_i-\alpha_i\beta_{i-1}),i=2,3,\ldots,n-1; \end{aligned} β1βi=c1/b1,=ci/(biαiβi1),i=2,3,,n1;
(2)解 L y = f Ly=f Ly=f
y 1 = f 1 / b 1 , y i = ( f i − α i y i − 1 ) / ( b i − α i β i − 1 ) , i = 2 , 3 , … , n ; \begin{aligned} \quad y_1&=f_1/b_1,\\ \quad y_i&=(f_i-\alpha_iy_{i-1})/(b_i-\alpha_i\beta_{i-1}),i=2,3,\ldots,n; \end{aligned} y1yi=f1/b1,=(fiαiyi1)/(biαiβi1),i=2,3,,n;
(3)解 U x = y Ux=y Ux=y
x n = y n , x i = y i − β i x i + 1 , i = n − 1 , n − 2 , … , 1. \begin{aligned} x_n&=y_n,\\ x_i&=y_i-\beta_ix_{i+1},i=n-1,n-2,\ldots,1. \end{aligned} xnxi=yn,=yiβixi+1,i=n1,n2,,1.

2.Python实现追赶法解三对角线方程组

# 自己原创,注意这里没有做矩阵类型判断,该方法仅适用于解系数矩阵为对角占优的三对角线方程组,P159
def chasing_thomas(triple_diagonal_matrix: np.ndarray, f_vector: np.ndarray):
    b_diagonal = np.diag(triple_diagonal_matrix)
    c_diagonal = np.diag(triple_diagonal_matrix, k=1)
    a_diagonal = np.diag(triple_diagonal_matrix, k=-1)
    # 计算Bata_i,dtype=np.float64,提高运算精度,否则默认最小精度
    beta_diagonal = np.ones_like(c_diagonal, dtype=np.float64)
    beta_diagonal[0] = c_diagonal[0] / b_diagonal[0]
    rows = triple_diagonal_matrix.shape[0]
    for i in range(1, rows - 1):
        beta_diagonal[i] = c_diagonal[i] / (b_diagonal[i] - a_diagonal[i] * beta_diagonal[i - 1])
    # 解Ly=f
    y = np.ones_like(f_vector, dtype=np.float64)
    y[0, 0] = f_vector[0, 0] / b_diagonal[0]
    for i in range(1, rows):
        y[i, 0] = (f_vector[i, 0] - a_diagonal[i - 1] * y[i - 1, 0]) / (
                b_diagonal[i] - a_diagonal[i - 1] * beta_diagonal[i - 1])
    # 解Ux=y,自己写的发现第一个解x0=1.,而不是0.8333333333333334,有精度损失,
    x = np.ones_like(f_vector, dtype=np.float64)
    x[rows - 1, 0] = y[rows - 1, 0]
    for i in range(rows - 2, 0, -1):
        x[i, 0] = y[i, 0] - beta_diagonal[i] * x[i + 1, 0]
    return x

3.解三对角线方程

[ 2 − 1 0 0 0 − 1 2 − 1 0 0 0 − 1 2 − 1 0 0 0 − 1 2 − 1 0 0 0 − 1 2 ] [ x 1 x 2 x 3 x 4 x 5 ] = [ 1 0 0 0 0 ] \begin{bmatrix} 2&-1&0&0&0\\ -1&2&-1&0&0\\ 0&-1&2&-1&0\\ 0&0&-1&2&-1\\ 0&0&0&-1&2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{bmatrix}= \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} 2100012100012100012100012x1x2x3x4x5=10000

4.测试

if __name__ == '__main__':
	# 追赶法测试成功,来源详见李庆扬数值分析第5版P177,e.g.9
    # dtype指定为双精度浮点提高运算精度
    tri_diagonal = np.array([[2, -1, 0, 0, 0],
                             [-1, 2, -1, 0, 0],
                             [0, -1, 2, -1, 0],
                             [0, 0, -1, 2, -1],
                             [0, 0, 0, -1, 2]], dtype=np.float64)
    f = np.array([1, 0, 0, 0, 0], dtype=np.float64).reshape((5, 1))
    print(chasing_thomas(tri_diagonal, f))

5.运行截图

说明:解向量{ x i x_i xi}为倒序 x 5 , … , x 1 . x_5,\ldots,x_1. x5,,x1.
其中 x 1 = 5 6 x_1=\frac56 x1=65,由于自己实现方法精度不足,故只输出保留到整数位
在这里插入图片描述

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值