376. 机器任务

28 篇文章 0 订阅
17 篇文章 0 订阅
这是一个涉及图论和二分图最小点覆盖问题的算法实现,通过匈牙利算法来解决任务在两台机器上的分配,目标是最小化机器重启次数。输入包括机器模式数量、任务数量及每个任务在不同机器上的模式需求,输出为最少的重启次数。代码中展示了如何读取输入数据,构建图,并应用深度优先搜索进行匹配,从而找出最优解。
摘要由CSDN通过智能技术生成

有两台机器 A,B以及 K 个任务。

机器 A有 N 种不同的模式(模式 0∼N−1),机器 B 有 M 种不同的模式(模式 0∼M−1)。

两台机器最开始都处于模式 0。

每个任务既可以在 A上执行,也可以在 B 上执行。

对于每个任务 i,给定两个整数 a[i] 和 b[i],表示如果该任务在 A 上执行,需要设置模式为 a[i],如果在 B 上执行,需要模式为 b[i]。

任务可以以任意顺序被执行,但每台机器转换一次模式就要重启一次。

求怎样分配任务并合理安排顺序,能使机器重启次数最少。

输入格式

输入包含多组测试数据。

每组数据第一行包含三个整数 N,M,K。

接下来 K 行,每行三个整数 i,a[i] 和 b[i],i 为任务编号,从 0 开始。

当输入一行为 0 时,表示输入终止。

输出格式

每组数据输出一个整数,表示所需的机器最少重启次数,每个结果占一行。

数据范围

N,M<100,K<1000
0≤a[i]<N
0≤b[i]<M

输入样例:

5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0

输出样例:

3

分析:图论+二分图最小点覆盖+匈牙利算法 

代码如下:

#include <iostream>
#include <cstring>

using namespace std;
const int N=110;
bool g[N][N],st[N];
int match[N];
int n,m,k,ans;

bool dfs(int u)
{
    for(int i=1;i<m;i++)
    {
        if(!g[u][i]||st[i])continue;
        st[i]=true;
        if(!match[i]||dfs(match[i]))
        {
            match[i]=u;
            return true;
        }
    }
    return false;
}

int main()
{
    while(cin>>n,n)
    {
        cin>>m>>k;
        memset(g,0,sizeof g);
        memset(match,0,sizeof match);
        while(k--)
        {
            int i,a,b;
            cin>>i>>a>>b;
            if(!a||!b)continue;
            g[a][b]=true;
        }
        
        ans=0;
        for(int i=1;i<n;i++)
        {
            memset(st,0,sizeof st);
            if(dfs(i)) ans++;
        }
        cout<<ans<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值