有两台机器 A,B以及 K 个任务。
机器 A有 N 种不同的模式(模式 0∼N−1),机器 B 有 M 种不同的模式(模式 0∼M−1)。
两台机器最开始都处于模式 0。
每个任务既可以在 A上执行,也可以在 B 上执行。
对于每个任务 i,给定两个整数 a[i] 和 b[i],表示如果该任务在 A 上执行,需要设置模式为 a[i],如果在 B 上执行,需要模式为 b[i]。
任务可以以任意顺序被执行,但每台机器转换一次模式就要重启一次。
求怎样分配任务并合理安排顺序,能使机器重启次数最少。
输入格式
输入包含多组测试数据。
每组数据第一行包含三个整数 N,M,K。
接下来 K 行,每行三个整数 i,a[i] 和 b[i],i 为任务编号,从 0 开始。
当输入一行为 0 时,表示输入终止。
输出格式
每组数据输出一个整数,表示所需的机器最少重启次数,每个结果占一行。
数据范围
N,M<100,K<1000
0≤a[i]<N
0≤b[i]<M
输入样例:
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0
输出样例:
3
分析:图论+二分图最小点覆盖+匈牙利算法
代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N=110;
bool g[N][N],st[N];
int match[N];
int n,m,k,ans;
bool dfs(int u)
{
for(int i=1;i<m;i++)
{
if(!g[u][i]||st[i])continue;
st[i]=true;
if(!match[i]||dfs(match[i]))
{
match[i]=u;
return true;
}
}
return false;
}
int main()
{
while(cin>>n,n)
{
cin>>m>>k;
memset(g,0,sizeof g);
memset(match,0,sizeof match);
while(k--)
{
int i,a,b;
cin>>i>>a>>b;
if(!a||!b)continue;
g[a][b]=true;
}
ans=0;
for(int i=1;i<n;i++)
{
memset(st,0,sizeof st);
if(dfs(i)) ans++;
}
cout<<ans<<endl;
}
return 0;
}