OUC离散数学II实验四(Python+Cpp) 图的最大匹配

实验主题

图的最大匹配

实验目的

1、掌握最大匹配,交错路径的定义;

2、掌握最大匹配的求解方法。

实验要求

输入:无向简单连通图的关联矩阵(例如:img)。

输出:此图的最大匹配 例如:M={e1,e3}

实验内容和实验步骤

根据分析,可以通过交错路径求解,只需要枚举出任意两点间的路径,再取其中最长的路径作为交错路径,即可求出最大匹配。匹配数为最长路径中的点数除以2,只保留商即可。

枚举出所有的路径可以采用dfs实现

# 找到所有点的邻接节点,方便用dfs搜索路径
adpoints = {i: [] for i in range(v_count)}
for each in m:
    p = list(filter(lambda x: x[1] == 1, enumerate(each)))
    adpoints[p[0][0]].append(p[1][0])
    adpoints[p[1][0]].append(p[0][0])
result = []
visited = [False] * v_count

# dfs搜索从start点开始的所有路径
def search(visited, start, re):
    vi = copy.deepcopy(visited)
    vi[start] = True
    r = copy.deepcopy(re)
    r.append(start)
    flag = True
    for i in adpoints[start]:
        if not vi[i]:
            flag = False
            search(vi, i, r)
    if flag:
        result.append(r)

# 搜索每一个点开始的路径
for i in range(v_count):
    search(visited, i, re=[])

再通过路径中的点找到对应的交错路径中应该取的边,可以将点两两为一组,一个作为起点一个作为终点,如果还剩余一个点,说明路径长度为偶数,这个点可以舍弃。

# 路径按长度排序
s = sorted(result, key=lambda x: len(x), reverse=True)

print("匹配数=", len(s[0]) // 2)

left = s[0][0::2]
right = s[0][1::2]
rep = []
# 根据点的路径找到对应的边,并输出
for i in range(len(s[0]) // 2):
    r = [0] * v_count
    r[left[i]] = 1
    r[right[i]] = 1
    x = [i for i in range(len(m)) if m[i] == r]
    rep.append("e" + str(x[0] + 1))
print("M = {", ','.join(rep), '}')

实验测试数据、代码及相关结果分析

  1. 输入的关联矩阵为

    1 0 0 1 1
    1 1 0 0 0
    0 0 1 1 0
    0 1 1 0 1
    

image-20221202191116868

  1. 输入的关联矩阵为

    1 0 1 1 1 0
    1 1 0 0 0 0
    0 1 1 0 0 0
    0 0 0 1 0 1
    0 0 0 0 1 1
    

    image-20221202191241649

  2. 输入的关联矩阵为

    1 0 0 1 0 1
    1 1 0 0 0 0 
    0 1 1 0 0 0
    0 0 1 1 1 0
    0 0 0 0 1 1
    

image-20221202191510159

  1. 输入的关联矩阵为

    1 0 0 0 0 0 0 1
    1 1 0 0 0 0 0 0
    0 1 1 0 0 0 0 0
    0 0 1 1 0 0 0 0
    0 0 0 1 1 0 0 0
    0 0 0 0 1 1 0 0
    0 0 0 0 0 1 1 0
    0 0 0 0 0 0 1 1
    

    image-20221202191600145

实验代码

Python

import copy

m = []
x = input()
while x:
    m.append(list(map(int, x.split())))
    x = input()
m = list(map(list, zip(*m)))
# 点的数量
v_count = len(m[0])
# 找到所有点的邻接节点,方便用dfs搜索路径
adpoints = {i: [] for i in range(v_count)}
for each in m:
    p = list(filter(lambda x: x[1] == 1, enumerate(each)))
    adpoints[p[0][0]].append(p[1][0])
    adpoints[p[1][0]].append(p[0][0])
result = []
visited = [False] * v_count


# dfs搜索从start点开始的所有路径
def search(visited, start, re):
    vi = copy.deepcopy(visited)
    vi[start] = True
    r = copy.deepcopy(re)
    r.append(start)
    flag = True
    for i in adpoints[start]:
        if not vi[i]:
            flag = False
            search(vi, i, r)
    if flag:
        result.append(r)


# 搜索每一个点开始的路径
for i in range(v_count):
    search(visited, i, re=[])
# 路径按长度排序
s = sorted(result, key=lambda x: len(x), reverse=True)

print("匹配数=", len(s[0]) // 2)
left = s[0][0::2]
right = s[0][1::2]
rep = []
# 根据点的路径找到对应的边,并输出
for i in range(len(s[0]) // 2):
    r = [0] * v_count
    r[left[i]] = 1
    r[right[i]] = 1
    x = [i for i in range(len(m)) if m[i] == r]
    rep.append("e" + str(x[0] + 1))
print("M = {", ','.join(rep), '}')

CPP

#include "iostream"
#include "vector"
#include "sstream"
#include "algorithm"

using namespace std;

struct Node {
    int num;
    vector<Node> child;
};
vector<Node> points;
vector<vector<int>> results;

void search(vector<bool> visited, int left_point, vector<int> rep) {
    visited[left_point] = true;
    rep.push_back(left_point);
    bool flag = true;
    for (auto x: points[left_point].child) {
        if (!visited[x.num]) {
            flag = false;
            search(visited, x.num, rep);
        }
    }
    if (flag) {
        results.push_back(rep);
    }
}

int main() {
    cout << "请输入关联矩阵:\n";
    string str;
    getline(cin, str);
    vector<vector<int>> matrix;
    int temp;
    while (str != "\0") {
        stringstream ss(str);
        vector<int> t;
        for (int j = 1; !ss.eof(); j++) {
            ss >> temp;
            t.push_back(temp);
        }
        matrix.push_back(t);
        getline(cin, str);
    }

    unsigned int v_num = matrix.size(), e_num = matrix[0].size();
    // 建立节点
    for (int i = 0; i < v_num; i++) {
        points.push_back(Node{i});
    }
    for (int j = 0; j < e_num; j++) {
        vector<int> t;
        for (int i = 0; i < v_num; i++) {
            if (matrix[i][j] == 1) t.push_back(i);
        }
        points[t[0]].child.push_back(points[t[1]]);
        points[t[1]].child.push_back(points[t[0]]);
    }
    vector<bool> visited;
    visited.assign(v_num, false);
    for (int i = 0; i < v_num; i++) {
        search(visited, i, vector<int>());
    }
    sort(results.begin(), results.end(),
         [](const vector<int> &x, const vector<int> &y) { return x.size() > y.size(); });
    cout << "匹配数:" << results[0].size() / 2 << endl;
    cout << "M = { ";
    for (int i = 0; i < (results[0].size() / 2) * 2; i += 2) {
        int left = results[0][i], right = results[0][i + 1];
        for (int j = 0; j < e_num; j++) {
            if (matrix[left][j] == 1 && matrix[right][j] == 1) {
                cout << "e" << j + 1 << ",";
                break;
            }
        }
    }
    cout << "\b }" << endl;
    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值