(源文档高清截图位于最后)
回顾:
对两个顶点u和v,若有边(u, v)直连,则称u和v相邻。若两条边有公共顶点,称两条边相邻。边与相连的顶点关联。
自环:一条从一个顶点到它本身的边。
极大(小)值=局部最大(小)值≠全局最大(小)值。
1、对无向图G(V, E),若,且对任意的v∈(V \ V’),总存在边(u, v)∈E且u∈V’,则称V’是G的一个点支配集。
换言之:点支配集以外的任意一个点总能与点支配集内的某一个点相邻。
求一个图的最小点支配集是NP困难的。
2、对无向图G(V, E),若,且对任意的e∈(E \ E’),存在E’中的边与其有公共点,则称E’是G的一个边支配集。
换言之:边支配集以外的任意一条边总能与边支配集内的某一条边相邻。
求一个图的最小边支配集是NP困难的。
3、对无向图G(V, E),若,且V’中的任意两点都不相邻,则称V’是G的一个点独立集。
求一个图的最大点独立集是NP困难的。
4、对无向图G(V, E),若,且E’中任意两条不同的边都没有公共的端点,且E’中任意一条边都不是自环,则称E’是G的一个边独立集,又称匹配。匹配中的边的端点称为饱和点(被匹配点)。
边数最多的匹配叫作最大匹配。如果图是带权图,那么权和最大的匹配称为最大权匹配。
如果一个匹配在加入任何一条边后都不再是一个匹配,那么这个匹配是一个极大匹配。最大的极大匹配就是最大匹配,任何最大匹配都是极大匹配。极大匹配一定是边支配集