452. 用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以 y y y 坐标并不重要,因此只要知道开始和结束的 x x x 坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在 104 104 104 个气球。
一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 x s t a r t , x e n d xstart,xend xstart,xend, 且满足 x s t a r t ≤ x ≤ x e n d xstart ≤ x ≤ xend xstart≤x≤xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
Example:
输入:
[
[
10
,
16
]
,
[
2
,
8
]
,
[
1
,
6
]
,
[
7
,
12
]
]
[ [10,16], [2,8], [1,6], [7,12] ]
[[10,16],[2,8],[1,6],[7,12]]
输出:
2
解释:
对于该样例,我们可以在 x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。
class Solution {
static bool cmp(const vector<int> &a, const vector<int> &b){
return a[1] < b[1];
}
public:
//区间求交集
//vector<>里面的vector存的是区间的初始坐标和结束坐标
int findMinArrowShots(vector<vector<int>>& points) {
if (points.size() == 0)
return 0;
//将区间从小到大排序
sort(points.begin(), points.end(), cmp);
int ans = 1, l = points[0][0], r = points[0][1];
for (int i = 1; i < points.size(); i++) {
//求交集
//当遇到一个新区间,如果 r 小于新区间的起点,就需要一个新飞镖。
//否则原飞镖的区间 l 和新区间的起点取最大值,r和新区间的终点取最小值
if (r < points[i][0]) {
l = points[i][0], r = points[i][1];
ans++;
} else {
l = max(l, points[i][0]), r = min(r, points[i][1]);
}
}
return ans;
}
};
求一篇 100% 题解,执行用时:70+% 都可以,改吐了都是这样!!!!