Module1 —— 前缀和与差分

前缀和

一维前缀和

前缀和的定义:求前n项和

例题:给定一个数列 a n ( 1 ≤ n ≤ 100000 ) {a_n}(1≤n≤100000) an(1n100000),有 q ( 1 ≤ q ≤ 100000 ) q(1≤q≤100000) q(1q100000)次询问,每次询问树立的第m个元素到第n个元素的和。

如果是暴力解法

有q次询问,每次都要扫一遍这个区间,最大时间复杂度是 O ( q × n ) O(q×n) O(q×n)

优化:(前缀和)

复杂度主要是在:q次查询,就是要扫q次区间。

前缀和的思想: 开一个更大的数组,将对区间的查询,转换为对区间端点的查询。

s u m [ i ] = s u m [ i − 1 ] + a [ i ] ; sum[i]=sum[i-1]+a[i]; sum[i]=sum[i1]+a[i]; //前 i-1项的和加上第 i 项的数值

意思就是:开一个大数组,假设为 a [ i ] ( i ≥ n ) a[i](i≥n) a[i](in),和为 s u m [ i ] = s u m [ i − 1 ] + a [ i ] sum[i]=sum[i-1]+a[i] sum[i]=sum[i1]+a[i] a [ m ] a[m] a[m] a [ n ] a[n] a[n]的和等于
s u m [ n ] − s u m [ m − 1 ] sum[n]-sum[m-1] sum[n]sum[m1]
在这里插入图片描述
s u m [ i ] sum[i] sum[i]是前缀和——算法竞赛中常用的小技巧。
前缀和的单次查询的时间复杂度是 O ( 1 ) O(1) O(1) q q q 次则是时间复杂度是 O ( n + q ) O(n+q) O(n+q)

例题
输入一个长度为n的整数序列。

接下来再输入m个询问,每个询问输入一对l, r。

对于每个询问,输出原序列中从第l个数到第r个数的和。

输入格式
第一行包含两个整数n和m。

第二行包含n个整数,表示整数数列。

接下来m行,每行包含两个整数l和r,表示一个询问的区间范围。

输出格式
共m行,每行输出一个询问的结果。

数据范围
1 ≤ l ≤ r ≤ n 1≤l≤r≤n 1lrn,
1 ≤ n , m ≤ 100000 1≤n,m≤100000 1n,m100000,
− 1000 ≤ 数 列 中 元 素 的 值 ≤ 1000 −1000≤数列中元素的值≤1000 10001000
输入样例:

5 3
2 1 3 6 4
1 2
1 3
2 4

输出样例:

3
6
10
#include<iostream>
using namespace std;
const int N = 100010;
int n,m;
int a[N],sum[N];
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 1;i <= n;i++)//前缀和的初始化
        scanf("%d", &a[i]);
    for(int i = 1;i <= n;i++)
        sum[i] = sum[i-1] + a[i];
    while(m--)
    {
        int l,r;
        scanf("%d%d", &l, &r);
        printf("%d\n", sum[r] - sum[l-1]);//区间和的计算
    }
    return 0;
}

二维前缀和

在这里插入图片描述
求蓝色阴影部分面积: S x 2 y 2 − S x 2 y 1 − 1 − S x 1 y 2 − 1 + S x 1 − 1 y 1 − 1 S_{x_2y_2}-S_{x_2y_1-1}-S_{x_1y_2-1}+S_{x_1-1y_1-1} Sx2y2Sx2y11Sx1y21+Sx11y11

前缀和公式: S i j = S i − 1 j + S i j − 1 − S j − 1 i − 1 + a i j S_{ij}=S_{i-1j}+S_{ij-1}-S_{j-1i-1}+a_{ij} Sij=Si1j+Sij1Sj1i1+aij

例题:子矩阵的和
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式
第一行包含三个整数n,m,q。

接下来n行,每行包含m个整数,表示整数矩阵。

接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。

输出格式
共q行,每行输出一个询问的结果。

数据范围
1 ≤ n , m ≤ 1000 1≤n,m≤1000 1n,m1000,
1 ≤ q ≤ 200000 1≤q≤200000 1q200000,
1 ≤ x 1 ≤ x 2 ≤ n 1≤x1≤x2≤n 1x1x2n,
1 ≤ y 1 ≤ y 2 ≤ m 1≤y1≤y2≤m 1y1y2m,
− 1000 ≤ 矩 阵 内 元 素 的 值 ≤ 1000 −1000≤矩阵内元素的值≤1000 10001000
输入样例:

3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4

输出样例:

17
27
21
#include<iostream>
#include<cstdio>

const int N = 1010;

int n,m,q;
int a[N][N],s[N][N];
int main()
{
    scanf("%d%d%d", &n, &m, &q);
    for(int i = 1;i <= n;i++)
        for(int j = 1; j <= n;j++)
            scanf("%d", &a[i][j]);
    for(int i = 1 ;i <= m;i++)
        for(int j  = 1;j <= m;j++)
            s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];//计算前缀和
    while(q--)
    {
        int x1,y1,x2,y2;
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        printf("%d\n",s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);//计算子矩阵
    }
    return 0;
    
}

差分

一维差分

a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n a1,a2,a3,...,an 前缀
构造 b 1 , b 2 , b 3 , . . . , b n b_1,b_2,b_3,...,b_n b1,b2,b3,...,bn 差分
使得: a i = b 1 + b 2 + . . . + b n a_i=b_1+b_2+...+b_n ai=b1+b2+...+bn
(对b[ ]求前缀和就是a[ ]);
其中:
b 1 = a 1 b_1=a_1 b1=a1;
b 2 = a 2 − a 1 b_2=a_2-a_1 b2=a2a1;
b 3 = a 3 − a 2 b_3=a_3-a_2 b3=a3a2;
b n = b n − b n − 1 b_n=b_n-b_{n-1} bn=bnbn1;

[ l , r ] + c [ l,r ]+c [l,r]+c a l a_l al+ c + a l + 1 c+a_{l+1} c+al+1+ c + . . . + a r c+...+a_r c+...+ar+ c c c
只需要在 [ l , r ] [l,r] [l,r] b加上即可 b l b_l bl+ c + b l + 1 c+b_{l+1} c+bl+1+ c + . . . + b r c+...+b_r c+...+br+ c c c
还需要: b r + 1 − c b_{r+1}-c br+1c
现在将时间复杂度从 O ( n ) O(n) O(n)改为 O ( 1 ) O(1) O(1)

#include<iostream>
#include<cstdio>

using namespace std;

const int N = 100010;

int n, m;
int a[N], b[N];
int main()
{
    scanf("%d%d", &n, &m);
    //前缀和的差分=原序列 差分的前缀和=原序列
    for(int i = 1;i <= n;i++)
        scanf("%d", &a[i]);
    for(int i = 1;i <= n;i++)
        b[i] = a[i] - a[i - 1];
    while(m--)
    {
        int l, r, c;
        scanf("%d%d%d", &l, &r, &c);
        b[l] += c;
        b[r + 1] -= c;
    }
    for(int i = 1;i <= n;i++)
        b[i] += b[i-1];
    for(int i = 1;i <= n;i++)
        printf("%d ", b[i]);
    return 0;
}

二维差分

二维差分直观图

例题:Acwing 798.差分矩阵
输入一个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2, c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。

每个操作都要将选中的子矩阵中的每个元素的值加上c。

请你将进行完所有操作后的矩阵输出。

输入格式
第一行包含整数n,m,q。

接下来n行,每行包含m个整数,表示整数矩阵。

接下来q行,每行包含5个整数x1, y1, x2, y2, c,表示一个操作。

输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。

数据范围
1 ≤ n , m ≤ 1000 1≤n,m≤1000 1n,m1000,
1 ≤ q ≤ 100000 1≤q≤100000 1q100000,
1 ≤ x 1 ≤ x 2 ≤ n 1≤x_1≤x_2≤n 1x1x2n,
1 ≤ y 1 ≤ y 2 ≤ m 1≤y_1≤y_2≤m 1y1y2m,
− 1000 ≤ c ≤ 1000 −1000≤c≤1000 1000c1000,
− 1000 ≤ 矩 阵 内 元 素 的 值 ≤ 1000 −1000≤矩阵内元素的值≤1000 10001000
输入样例:

3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1

输出样例:

2 3 4 1
4 3 4 1
2 2 2 2
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<algorithm>
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
	int w = 1, s = 0;
	char ch = getchar();
	while (ch < '0' || ch>'9') { if (ch == '-') w = -1; ch = getchar(); }
	while (ch >= '0' && ch <= '9') { s = s * 10 + ch - '0';ch = getchar(); }
	return s * w;
}
//最大公约数
int gcd(int x,int y) {
    if(x<y) swap(x,y);//很多人会遗忘,大数在前小数在后
    //递归终止条件千万不要漏了,辗转相除法
    return x % y ? gcd(y, x % y) : y;
}
//计算x和y的最小公倍数
int lcm(int x,int y) {
    return x * y / gcd(x, y);//使用公式
}
int ksm(int a, int b, int mod) { int s = 1; while(b) {if(b&1) s=s*a%mod;a=a*a%mod;b>>=1;}return s;}
//------------------------ 以上是我常用模板与刷题几乎无关 ------------------------//
const int N = 1010;

int n, m, q;
int a[N][N], b[N][N];//b[i][j]记录的是相邻元素的差

//二维差分的核心
void insert(int x1, int y1, int x2, int y2, int c)
{
    //只需要处理4个点   (将O(n)的时间复杂度变成O(1))
    b[x1][y1] += c;//将(x1,y1)右下角的所有点+c
    b[x2 + 1][y1] -= c;//将(x2+1,y1)右下角的所有点-c
    b[x1][y2 + 1] -= c;//将(x1,y2+1)右下角的所有点-c
    b[x2 + 1][y2 + 1] += c;//将(x2+1,y2+1)右下角的所有点+c
}
signed main()
{
    scanf("%d%d%d", &n, &m, &q);   
    
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= m;j++)
            scanf("%lld", &a[i][j]);
    
    //差分 初始化矩阵。
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= m;j++) 
            insert (i, j, i, j, a[i][j]);

    while (q--) {
        int x1, y1, x2, y2, c;
        scanf("%lld%lld%lld%lld%lld", &x1, &y1, &x2, &y2, &c); 
        insert(x1, y1, x2, y2, c);
    }
    
    //求前缀和
    for(int i = 1;i <= n;i++)
        for(int j = 1; j <= m; j++)
            b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
            
    //输出
    for(int i = 1; i <= n; i++) {
        for(int j = 1;j <= m;j++)
            printf("%lld ", b[i][j]);
        printf("\n");
    }
        
    return 0;
}

前缀和与差分的应用 (洛谷P3397 地毯)

题目描述
n × n n\times n n×n 的格子上有 m m m 个地毯。

给出这些地毯的信息,问每个点被多少个地毯覆盖。

输入格式
第一行,两个正整数 n n n, m m m

意义如题所述。
接下来 m m m 行,每行两个坐标 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2),代表一块地毯,左上角是 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角是 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)

输出格式
输出 n n n 行,每行 n n n 个正整数。

i i i 行第 j j j 列的正整数表示 ( i , j ) (i,j) (i,j) 这个格子被多少个地毯覆盖。

输入输出样例
输入

5 3
2 2 3 3
3 3 5 5
1 2 1 4

输出

0 1 1 1 0
0 1 1 0 0
0 1 2 1 1
0 0 1 1 1
0 0 1 1 1

说明/提示
样例解释

覆盖第一个地毯后:

0	0	0	0	0
0	1	1	0	0
0	1	1	0	0
0	0	0	0	0
0	0	0	0	0

覆盖第一、二个地毯后:

0	0	0	0	0
0	1	1	0	0
0	1	2	1	1
0	0	1	1	1
0	0	1	1	1

覆盖所有地毯后:

0	1	1	1	0
0	1	1	0	0
0	1	2	1	1
0	0	1	1	1
0	0	1	1	1

数据范围

对于 20% 的数据,有 n ≤ 50 n\le 50 n50 m ≤ 100 m\le 100 m100

对于 100% 的数据,有 n n n, m ≤ 1000 m\le 1000 m1000

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<algorithm>
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
	int w = 1, s = 0;
	char ch = getchar();
	while (ch < '0' || ch>'9') { if (ch == '-') w = -1; ch = getchar(); }
	while (ch >= '0' && ch <= '9') { s = s * 10 + ch - '0';ch = getchar(); }
	return s * w;
}
//最大公约数
int gcd(int x,int y) {
    if(x<y) swap(x,y);//很多人会遗忘,大数在前小数在后
    //递归终止条件千万不要漏了,辗转相除法
    return x % y ? gcd(y, x % y) : y;
}
//计算x和y的最小公倍数
int lcm(int x,int y) {
    return x * y / gcd(x, y);//使用公式
}
int ksm(int a, int b, int mod) { int s = 1; while(b) {if(b&1) s=s*a%mod;a=a*a%mod;b>>=1;}return s;}
//------------------------ 以上是我常用模板与刷题几乎无关 ------------------------//
const int N = 1010;
int a[N][N];
signed main()
{
	int n = read(), m = read();
	while (m--) {
		int x1 = read(), y1 = read(), x2 = read(), y2 = read();
		a[x1][y1]++;
		a[x2 + 1][y1]--;
		a[x1][y2 + 1]--;
		a[x2 + 1][y2 + 1]++;
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			if (j == n) printf("%lld\n", a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1]);
			else printf("%lld ", a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1]);
		}
	}
	return 0;
} 
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值