Outputformat介绍
OutputFormat发生在ReduceTask之后,接收ReduceTask产生的数据,然后将结果按照指定格式来写出。OutputFormat是MapReduce输出的基类,所有实现MapReduce输出都实现了OutputFormat接口。
在MapReduce中,如果不指定,默认使用的是TextOutputFormat。 TextOutputFroamt继承了FileOutputFormat。其中,FileOutputFormat负责对输出路径进行校验,TextOutputFormat则是对数据进行写出。
在MapReduce中,也支持自定义输出格式以及多源数据,但是注意,实际开发中自定义输出格式以及多源输出用的非常少。
1、文本输出TextOutputFormat 默认的输出格式是TextOutputFormat,它把每条记录写为文本行。它的键和值可以是任意类型,疑问TextOutputFormat调用toString()方法把他们转换为字符串。
2、SequenceFileOutputFormat 将SequenceFileOutputFormat输出作为后续MapReduce任务的输入,这便是一种好的输出格式,因为它的格式紧凑,很容易被压缩。
3、自定义OutputFormat 根据用户需求,自定义实现输出。
它的作用是
a. 校验输出路径,例如检查输出路径不存在。
b. 提供输出流用于将数据写出。
案例自定义OutputFormat
1、使用场景 为了实现控制最终文件的输出路径和输出格式,可以自定义OutputFormat。
例如:要在一个MapReduce程序中根据数据的不同输出两类结果到不同的目录,这类灵活的输出需求可以通过自定义OutputFormat来实现。
2、自定义OUtputFormat步骤 (1)自定义一个类继承FileOutputFormat。 (2)改写RecordWriter,具体改写输出数据的方法write()。
数据准备,有订单数据如下:ordersource.txt
mobile,20241214,orderid1231231
windows,20241213,orderid1231232
我们将含有mobile数据放到 mobile.log里,将含有windows数据放到windows.log里
编写程序如下
自定义format类
package outputf;
import org.apache.hadoop.io.NullWritable;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class SelfOutputFormat extends FileOutputFormat<Text, NullWritable> {
@Override
public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
// 创建一个RecordWriter
return new FileRecordWriter(job);
}
}
RecordWriter类
package outputf;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import java.io.IOException;
public class FileRecordWriter extends RecordWriter<Text, NullWritable> {
FSDataOutputStream windowsout = null;
FSDataOutputStream mobileout = null;
public FileRecordWriter(TaskAttemptContext job) {
// 1 获取文件系统
FileSystem fs;
try {
fs = FileSystem.get(job.getConfiguration());
// 2 创建输出文件路径
Path mobilepath = new Path("/output/mobile.log");
Path windowspath = new Path("/output/windows.log");
// 3 创建输出流
windowsout = fs.create(windowspath);
mobileout = fs.create(mobilepath);
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
public void write(Text key, NullWritable value) throws IOException, InterruptedException {
// 判断是否包含“windows”输出到不同文件
if (key.toString().contains("windows")) {
windowsout.write(key.toString().getBytes());
} else {
mobileout.write(key.toString().getBytes());
}
}
@Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {
// 关闭资源
IOUtils.closeStream(windowsout);
IOUtils.closeStream(mobileout);
}
}
Mapper类
package outputf;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* @description Map 阶段,分别计算每行每个单词出现的次数,key 是单词,value 为 1(表示 1 个单词)。
*/
public class OutputMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
@Override
protected void map(LongWritable key,Text value,Mapper<LongWritable, Text, Text, NullWritable>.Context context)throws IOException,InterruptedException{
// 写出
context.write(value,NullWritable.get());
}
}
Reducer
package outputf;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* @description Reduce 阶段
*/
public class OutputReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
Text k = new Text();
@Override
protected void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException, InterruptedException {
// 1 获取一行
String line = key.toString();
// 2 拼接
line = line + "\r\n";
// 3 设置key
k.set(line);
// 4 输出
context.write(k, NullWritable.get());
}
}
JobMain
package outputf;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.BasicConfigurator;
import java.io.IOException;
public class JobMain {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
BasicConfigurator.configure(); //自动快速地使用缺省Log4j环境
//一、初始化Job
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration, "mr");
job.setJarByClass(JobMain.class);
args = new String[] { "/ordersource.txt", "/output" };
Configuration conf = new Configuration();
job.setJarByClass(JobMain.class);
job.setMapperClass(OutputMapper.class);
job.setReducerClass(OutputReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
// 要将自定义的输出格式组件设置到job中
job.setOutputFormatClass(SelfOutputFormat.class);
Path input = new Path(args[0]);
Path output = new Path(args[1]);
// 如果输出路径存在,则进行删除
FileSystem fs = FileSystem.get(conf);
if (fs.exists(output)) {
fs.delete(output,true);
}
FileInputFormat.setInputPaths(job, input);
// 虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat
// 而fileoutputformat要输出一个_SUCCESS文件,所以,在这还得指定一个输出目录
SelfOutputFormat.setOutputPath(job, output);
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
打jar包运行
hadoop jar /hadoopmapreduce-1.0-SNAPSHOT.jar outputf.JobMain
结果如下,我们看到mobile的数据输出到mobile.log里,windows的数据输出到windows.log里