LeetCode 第248场周赛
1. 基于排列构建数组(模拟)
题解:
(水题)如题意模拟即可。
class Solution {
public:
vector<int> buildArray(vector<int>& nums) {
int n = nums.size();
vector<int> ans(n);
for (int i = 0; i < nums.size(); i++) {
ans[i] = nums[nums[i]];
}
return ans;
}
};
2. 消灭怪物的最大数量(贪心)
时间 = 路径dist /速度speed,消灭先到达的怪物即可。
贪心思想:消灭到达时间短的怪物即可。
class Solution {
public:
int eliminateMaximum(vector<int>& dist, vector<int>& speed) {
int n = dist.size();
vector<double> t(n);
for (int i = 0; i < n; i++) {
if (dist[i] == 0) return 0;
t[i] = 1.0 * dist[i] / speed[i];
}
sort(t.begin(), t.end());
int ans = 0;
for (int i = 0; i < n; i++) {
if (t[i] > ans) ans++;
else return ans;
}
return ans;
}
};
3. 统计好数字的数目(快速幂)
依题意:下标是:0~9
所以:
偶数下标为偶数
0~9中有5个偶数:0,2,4,6,8
奇数下标为质数
0~9中有4个质数:2,3,5,7
因为包含前导0,且数字可重复
所以:要判断有多少种填法?
就是单独对每个位置判断即可
奇数下标有:
n
2
\frac{n}{2}
2n个,那么就有
4
n
2
4^{\frac{n}{2}}
42n 种
偶数下标有:
n
+
1
2
\frac{n+1}{2}
2n+1个,那么就有
5
n
+
1
2
5^{\frac{n+1}{2}}
52n+1 种
最终乘法原理 结果为:ans = a * b;
因为数比较大,所以要 % (1e9 + 7)
数据比较大,所以需要用快速幂来求 4 n 2 4^{\frac{n}{2}} 42n 和 5 n + 1 2 5^{\frac{n+1}{2}} 52n+1
⚠ 记得开long long ⚠
#define ll long long
const int MOD = 1e9 + 7;
class Solution {
public:
ll qmi(ll a, ll b) {
ll res = 1;
while (b) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
}
//偶数:0, 2, 4, 6, 8
//质数:2, 3, 5, 7
int countGoodNumbers(ll n) {
ll a = qmi(5, (n + 1) / 2);
ll b = qmi(4, n / 2);
return (a * b) % MOD;
}
};