LeetCode 第248场周赛题解

1. 基于排列构建数组(模拟)

题解:
(水题)如题意模拟即可。

class Solution {
public:
    vector<int> buildArray(vector<int>& nums) {
        int n = nums.size();
        vector<int> ans(n);
        for (int i = 0; i < nums.size(); i++) {
            ans[i] = nums[nums[i]];
        }
        return ans;
    }
};

2. 消灭怪物的最大数量(贪心)

时间 = 路径dist /速度speed,消灭先到达的怪物即可。
贪心思想:消灭到达时间短的怪物即可。

class Solution {
public:
    int eliminateMaximum(vector<int>& dist, vector<int>& speed) {
        int n = dist.size();
        vector<double> t(n);
        for (int i = 0; i < n; i++) {
            if (dist[i] == 0) return 0;
            t[i] = 1.0 * dist[i] / speed[i];
        }

        sort(t.begin(), t.end());

        int ans = 0;
        for (int i = 0; i < n; i++) {
            if (t[i] > ans) ans++;
            else return ans;
        }
        return ans;
    }
};

3. 统计好数字的数目(快速幂)

依题意:下标是:0~9
所以:
偶数下标为偶数
0~9中有5个偶数:0,2,4,6,8
奇数下标为质数
0~9中有4个质数:2,3,5,7

因为包含前导0,且数字可重复
所以:要判断有多少种填法?
就是单独对每个位置判断即可
奇数下标有: n 2 \frac{n}{2} 2n个,那么就有 4 n 2 4^{\frac{n}{2}} 42n
偶数下标有: n + 1 2 \frac{n+1}{2} 2n+1个,那么就有 5 n + 1 2 5^{\frac{n+1}{2}} 52n+1
最终乘法原理 结果为:ans = a * b;
因为数比较大,所以要 % (1e9 + 7)

数据比较大,所以需要用快速幂来求 4 n 2 4^{\frac{n}{2}} 42n 5 n + 1 2 5^{\frac{n+1}{2}} 52n+1

⚠ 记得开long long ⚠

#define ll long long
const int MOD = 1e9 + 7;
class Solution {
public:
    ll qmi(ll a, ll b) {
        ll res = 1;
        while (b) {
            if (b & 1) res =  res * a % MOD;
            a = a * a % MOD;
            b >>= 1;
        }
        return res;
    }
    
    //偶数:0, 2, 4, 6, 8
    //质数:2, 3, 5, 7
    int countGoodNumbers(ll n) {
        ll a = qmi(5, (n + 1) / 2);
        ll b = qmi(4, n / 2);
        return (a * b) % MOD;
    }
};

4. 最长公共子路径(随缘)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值