机器学习——2.分类算法

目录

sklearn转换器和估计器

转换器

估计器(sklearn机器学习算法的实现)

K-近邻算法

what?

K-近邻算法(KNN)原理

如何确定邻居?

电影类型分析

K-近邻算法API

案例1:鸢尾花种类预测

模型选择与调优

交叉验证

超参数搜索-网格搜索

模型选择与调优API

鸢尾花案例增加K值调优

案例:预测facebook签到的位置

朴素贝叶斯算法

概率基础

拉普拉斯平滑系数 

API 

案例:20类新闻分类

决策树 

信息熵

决策树的划分依据之一——信息增益

决策树API

决策树可视化

案例:泰坦尼克号乘客生存预测

随机森林

原理过程

BootStrap抽样

API


sklearn转换器和估计器

转换器

特征工程的父类

  1. 实例化(实例化的是一个转换器类(Transformer))
  2. 调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

标准化:(x - mean)/ std

        fit_transform()

                fit()                计算每一列的平均值、标准差

                transform()(x - mean)/ std进行最终的转换

估计器(sklearn机器学习算法的实现)

  1. 实例化一个estimator
  2. estimator.fit(x_train, y_train)计算,调用完毕,模型生成
  3. 模型评估

        (1)直接比对真实值和预测值

        y_predict = estimator.predict(x_test)

        y_test == y_predict

        (2)计算准确率

        accuracy = estimator.score(x_test, y_test)


K-近邻算法

what?

6c60e958d6284af1a840d7b0cad288b4.png

 根据邻居推测出自己的类别

K-近邻算法(KNN)原理

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别

k=1?容易受到异常点的影响

如何确定邻居?

计算距离

距离公式(欧式距离)

如a(a1,a2,a3),b(b1,b2,b3)

gif.latex?%5Csqrt%7B%5Cleft%20%28%20a1-b1%20%5Cright%20%29%5E%7B2%7D+%5Cleft%20%28%20a2-b2%20%5Cright%20%29%5E%7B2%7D+%5Cleft%20%28%20a3-b3%20%5Cright%20%29%5E%7B2%7D%7D

曼哈顿距离

gif.latex?%5Csqrt%7B%5Cleft%20%7C%20a1-b1%20%5Cright%20%7C%5E%7B2%7D+%5Cleft%20%7C%20a2-b2%20%5Cright%20%7C%5E%7B2%7D+%5Cleft%20%7C%20a3-b3%20%5Cright%20%7C%5E%7B2%7D%7D

明可夫斯基距离

电影类型分析

e2419740cc7443e9b60a01f9346f45e2.png

分析

k = 1爱情片
k = 2爱情片
... ...
k = 6无法确定
k = 7(新加的一个动作片)动作片

 k值取得过小,容易受到异常点的影响

k值取得过大,样本不均衡的影响

K-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

  • n_neighbors:k值,int,可选(默认=5),k_neighbors查询默认使用的邻居数
  • algorithm:{‘auto’,‘ball_tree’,'kd_tree',‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用BallTree,‘kd_tree’将使用KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。(不同实现方式影响效率)

案例1:鸢尾花种类预测

数据集介绍

f3b7c631e45e4e35812183aea207b863.png

步骤

  1. 获取数据
  2. 数据集划分
  3. 特征工程:标准化
  4. KNN预估器流程
  5. 模型评估
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

def  knn_demo():
    # 1.获取数据
    iris = load_iris()
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    # 3.特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 方法一:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法二:计算准确值
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

if __name__ == "__main__":
    knn_demo()

ba7cf1d781944b6e8e49f6dcbc1cbf08.png优点:简单,易于理解,易于实现,无需训练

缺点

  1. 必须指定K值,K值选择不当则分类精度不能保证
  2. 懒惰算法,对测试样本分类时的计算量大,内存开销大

使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试


模型选择与调优

交叉验证

973948c52a89490aa76b6a11f19d4ee0.png

ee2961bcea4e4a7485cc5e52510bdeb8.png

超参数搜索-网格搜索

 41edf2d872e24c928785c1e06d514c29.png

模型选择与调优API

82f42dbe91b345aa8d786bf1d124aa43.png

鸢尾花案例增加K值调优

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV

def  knn_demo():
    # 1.获取数据
    iris = load_iris()
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    # 3.特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    # 加入网格搜索与交叉验证
    #参数准备
    param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 方法一:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法二:计算准确值
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    # 最佳参数:best_params_
    print("最佳参数:\n", estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n", estimator.best_score_)
    # 最佳估计器:best_estimator_
    print("最佳估计器:\n", estimator.best_estimator_)
    # 交叉验证结果:vc_results_
    print("交叉验证结果:\n", estimator.cv_results_)

if __name__ == "__main__":
    knn_demo()

cebae2ab63dd45f797ed4c4cfecd8b65.png

案例:预测facebook签到的位置

3f645ed9df28449ca477c9b253e03978.png

流程分析

  • 获取数据
  • 数据处理

        目的:

                特征值 x,目标值 y

        a.缩小数据范围

                2 < x < 2.5

                1.0 < y < 1.5

        b.time --> 年月日时分秒

        c.过滤签到次数少的地点

  • 特征工程:标准化
  • KNN算法预估流程
  • 模型选择与调优
  • 模型评估
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
import pandas as pd

def  knn_demo():
    # 1.获取数据
    data = pd.read_csv("train.csv")
    # 2.基本的数据处理
    # 缩小数据范围
    data.query("x < 2.5 & x > 2 & y > 1.0")
    # 处理时间特征
    time_value = pd.to_datetime(data["time"], unit="s")
    date = pd.DatetimeIndex(time_value)
    data["day"] = date.day
    data["weekday"] = date.weekday
    data["hour"] = date.hour
    # 3.过滤签到次数少的地点
    place_count = data.groupby("place_id").count()["row_id"]
    data_final = data[data["place_id"].isin(place_count[place_count > 3].index.values)]
    # 筛选特征值和目标值
    x = data_final[["x", "y", "accuracy", "day", "weekday", "hour"]]
    y = data_final["place_id"]
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(x, y)
    # 3.特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    # 加入网格搜索与交叉验证
    #参数准备
    param_dict = {"n_neighbors": [3, 5, 7, 9]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 方法一:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法二:计算准确值
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    # 最佳参数:best_params_
    print("最佳参数:\n", estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n", estimator.best_score_)
    # 最佳估计器:best_estimator_
    print("最佳估计器:\n", estimator.best_estimator_)
    # 交叉验证结果:vc_results_
    print("交叉验证结果:\n", estimator.cv_results_)

if __name__ == "__main__":
    knn_demo()

朴素贝叶斯算法

概率基础

992053cb9f964604bb4c0b5fd457d99e.png

9cee3923c39f4d528cac26146ad77576.png

1a947d3bc34d4a0d9614d7e69911207f.png

5dba6a446d9143349f96830236ed056b.png

拉普拉斯平滑系数 

11fa5cec4f514c908048f97a34c70f40.png

b9f31ca777f643349201d0c7c94e43e4.png

API 

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)

  • 朴素贝叶斯分类
  • alpha:拉普拉斯平滑系数

案例:20类新闻分类

16b11eb27e9d4c839854354494880d95.png

流程分析

  1. 获取数据
  2. 划分数据集
  3. 特征工程:文本特征抽取
  4. 朴素贝叶斯预估器流程
  5. 模型评估

优点

  • 对缺失数据不太敏感,算法也比较简单,常用于文本分类
  • 分类准确度高,速度快

缺点

  • 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from torch import multinomial

def  nb_demo():
    # 1.获取数据
    news = fetch_20newsgroups()
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)
    # 3.特征工程:文本特征抽取
    transfer = TfidfVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.朴素贝叶斯预估器流程
    estimator = MultinomialNB()
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 方法一:直接对比真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("真实值和预测值对比:\n", y_test == y_predict)
    # 方法二:计算准确值
    score = estimator.score(x_test, y_test)
    print("准确值:\n", score)

if __name__ == "__main__":
    nb_demo()

8f29073faf1245cb9ec739cf41b33f20.png


决策树 

信息熵

50aac5929b384b1eae7714cccb6050f1.png

cef732db2ec84d978d1b3a6d0b2fd729.png

9a3d2db31e604227b87d7fdb1a10e9bb.png

决策树的划分依据之一——信息增益

特征A对训练数据集D的信息增益g(D,A),定义为集合D和信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:

g(D,A)= H(D)- H(D|A)

a79379865c6b43cab9654adb12ed9722.png

 b5785ca3409b4721943d75f7313179d4.png

28979aaef4e445769bddc646de9706e6.png

239a17ef0c27414bbb1f4730a383835a.png

决策树API

aa135e8a161c41859260cdbbdb51aa4f.png

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

def  tree_demo():
    # 1.获取数据
    iris = load_iris()
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
    # 3.决策树预估器
    estimator = DecisionTreeClassifier(criterion='entropy')
    estimator.fit(x_train, y_train)
    # 4.模型评估
    # 方法一:直接对比真实值与测试值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("真实值与预测值对比:\n", y_test == y_predict)
    # 方法二:计算准确值
    score = estimator.score(x_test, y_test)
    print("准确值为:\n", score)

if __name__ == "__main__":
    tree_demo()

bdd878ca02454803b307eea7f7ebfefe.png

决策树可视化

1.保存树的结构到dot文件

0b8fed0dd8624fa5a950754aa8447691.png

2.把dot文件中的内容粘到网站中生成树的图像

Webgraphviz (我没有加载出来)

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz

def  tree_demo():
    # 1.获取数据
    iris = load_iris()
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
    # 3.决策树预估器
    estimator = DecisionTreeClassifier(criterion='entropy')
    estimator.fit(x_train, y_train)
    # 4.模型评估
    # 方法一:直接对比真实值与测试值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("真实值与预测值对比:\n", y_test == y_predict)
    # 方法二:计算准确值
    score = estimator.score(x_test, y_test)
    print("准确值为:\n", score)
    # 决策树可视化
    export_graphviz(estimator, out_file="iris_tree.dot", feature_names=iris.feature_names)

if __name__ == "__main__":
    tree_demo()

案例:泰坦尼克号乘客生存预测

407daf35a72749bfb8f40fe5abcfbf24.png

d0e8297fda3147debd8fe9133f44f0b3.png

f2b0e8c69a9448a3855758f9a65ecce8.png

流程分析:特征值 目标值

  1. 获取数据
  2. 数据处理:缺失值处理、特征值 -->  字典类型
  3. 准备好特征值 目标值
  4. 划分数据集
  5. 特征工程:字典特征抽取
  6. 决策树预估器流程
  7. 模型评估
from pandas import pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz

def  tree_demo():
    # 1.获取数据
    path = "http..."
    titanic = pd.read_csv(path)
    # 筛选特征值和目标值
    x = titanic[["pclass", 'age', 'sex']]
    y = titanic['survived']
    # 2.数据处理
    # (1)缺失值处理
    x['age'].fillna(x['age'].mean(), inplace=True)
    # (2)转换成字典
    x.to_dict(orient='records')
    # 3.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
    # 4.字典特征抽取
    transfer = DictVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 5.决策树预估器
    estimator = DecisionTreeClassifier(criterion='entropy')
    estimator.fit(x_train, y_train)
    # 6.模型评估
    # 方法一:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法二:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    # 可视化决策树
    export_graphviz(estimator, out_file='titanic_tree.dot', feature_names=transfer.get_feature_names())

if __name__ == "__main__":
    tree_demo()

随机森林

c0b0d24961d34d9eb3968c3494747d7b.png

原理过程

f1d0cd4f4f0948beafc143ba0eaad4a6.png

BootStrap抽样

训练集随机——N个样本中随机有放回的抽样N个

bootstrap 随机有放回抽样

[1,2,3,4,5]

新的树的训练集(不是固定的)

[2,2,3,1,5]

特征随机——从M个特征中随机抽取m个特征

M >> m 降维

85da55dda2e24c6999f8e1da1cea0a8a.png

API

845c146fe0df4568966e77d393167be1.png

from pandas import pd
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.feature_extraction import DictVectorizer

def  tree_demo():
    # 1.获取数据
    path = "http..."
    titanic = pd.read_csv(path)
    # 筛选特征值和目标值
    x = titanic[["pclass", 'age', 'sex']]
    y = titanic['survived']
    # 2.数据处理
    # (1)缺失值处理
    x['age'].fillna(x['age'].mean(), inplace=True)
    # (2)转换成字典
    x.to_dict(orient='records')
    # 3.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
    # 4.字典特征抽取
    transfer = DictVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 5.加入网格搜索与交叉验证
    # 参数准备
    param_dict = {'n_estimators':[120,200,300,500,800,1200],'max_depth':[5,8,,15,25,30]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)
    estimator.fit(x_train, y_train)
    # 6.模型评估
    # 方法一:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法二:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

if __name__ == "__main__":
    tree_demo()

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值