题目:
代码:
#include<iostream>
#include<string>
#include<queue>
using namespace std;
int gcd(int a, int b)
{
int tmp;
if (a % b == 0)
return b;
else
{
while (a % b != 0)
{
tmp = a % b;
a = b;
b = tmp;
}
return b;
}
}
int lcm(int a, int b)
{
return a*b/gcd(a,b);
}
int main()
{
int x, y;
int flag = 0;
cin >> x >> y;
for(int i=x;i<=y;i=i+x)
for (int j = x; j <= y; j=j+x)
{
if ((gcd(i,j) == x) && (lcm(i,j) == y))
{
flag++;
}
}
cout << flag << endl;
return 0;
}
题目需要的就是最大公约数的算法(即欧几里得算法),和最小公倍数算法。经过查阅可知:两数最小公倍数等于两数之积除以两数的最大公约数。
下面给出证明过程:
欧几里得算法也可在往期更新中找到:
点此查看往期的欧几里得算法
希望对你有所帮助!