最大公倍数和最小公约数问题

题目:
在这里插入图片描述
代码:

#include<iostream>
#include<string>
#include<queue>

using namespace std;
int gcd(int a, int b)
{
		int tmp;
		if (a % b == 0)
			return b;
		else
		{
			while (a % b != 0)
			{
				tmp = a % b;
				a = b;
				b = tmp;
			}
			return b;
		}
}
int lcm(int a, int b)
{
    return a*b/gcd(a,b);
}
int main()
{
	int x, y;
	int flag = 0;
	cin >> x >> y;
	for(int i=x;i<=y;i=i+x)
		for (int j = x; j <= y; j=j+x)
		{
			if ((gcd(i,j) == x) && (lcm(i,j) == y))
			{
				flag++;
			}
		}
	cout << flag << endl;
	return 0;
}

题目需要的就是最大公约数的算法(即欧几里得算法),和最小公倍数算法。经过查阅可知:两数最小公倍数等于两数之积除以两数的最大公约数。
下面给出证明过程:
在这里插入图片描述

欧几里得算法也可在往期更新中找到:
点此查看往期的欧几里得算法

希望对你有所帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值