数组与字符串总结

一、数组

基本概念

特点:顺序存储,每个元素大小,类型相同,元素有限

高维数组可以转化为一维数组

高维数组存放次序:按行优先或者按列优先

按行优先的寻址公式:

  1. 二维数组a[m] [n]: Loc(a[i] [j]) = Loc(a[0] [0]) + (i*n+j) * C
  2. 三维数组a[m] [n] [p]: Loc(a[i] [j] [k]) = Loc(a[0] [0] [0]) + (i*n *p +j * p + k) * C
  3. a[i1] [i2]…[in] =在这里插入图片描述

按列优先的寻址公式:

  1. 二维数组a[m] [n]: Loc(a[i] [j]) = Loc(a[0] [0]) + (j*m+i) * C
  2. 三维数组a[m] [n] [p]: Loc(a[i] [j] [k]) = Loc(a[0] [0] [0]) + (k*m *n +j * m + i) * C
  3. a[i1] [i2]…[in]= 在这里插入图片描述

举例:

A[0:2,0:4,0:10,0:2],A[I] [J] [K] [L] 地址计算公式

按行优先:

*Loc(A)+(165I+33J+3K+L)C

按列优先:

*Loc(A)+ (165L+15K+3J+I)C

二、矩阵

1、矩阵的乘法操作

**思路:**三重for循环实现

//矩阵乘法
void mul(int a[][maxsize], int b[][maxsize], int ans[][maxsize],int a_m, int a_n, int b_m, int b_n){//a_m,a_n为a的行数与列数,b_m,b_n为b的行数与列数
	int i,j,k; 
	for(i=0; i < a_m; i++){	//三重for循环 
		for(j=0; j < b_n; j++){
			for(k=0; k < a_n; k++){
				ans[i][j] += a[i][k] * b[k][j];
			} 
		}
	} 
} //O(n^2*m)

2、特殊矩阵的压缩存储

特殊矩阵:(转化为一阶矩阵存储都是下标从0开始)
  1. 对称矩阵的压缩存储 (注意是1开头)

    • 一共N(N+1)/2元素

    • 行优先存储:掌握自己推导

      • i>=j d[k] = i(i-1)/2 + (j-1) 下三角区域
      • i < j, d[q] = j(j-1)/2 + (i-1) 上三角区域
  2. 三角矩阵

    • 上三角矩阵 i<j M(i,j) = 0
      • 寻址方式:
        • 行优先:k = n + n-1 + n-i+2 + (j-i)
        • 列优先: k = 1+2+…+(j-1)+(i-1)
    • 下三角矩阵i>j M(i,j) = 0
      • 寻址方式:
        • 行优先:k = 1+2+…+(i-1)+(j-1)
        • 列优先:k = n + n-1 + n-j+2 + (i-j)
  3. 对角矩阵

    • 三对角矩阵(带状矩阵)的压缩存储

      • 在这里插入图片描述

      • |i-j|>1时,有ai,j = 0(1<=i,j<=n)

      • 行优先

        • 前 i-1 行共有3(i-1)-1个元素
        • ai,j是第 i 行第j-i+2个元素
        • ai,j为2i+j-2个元素, 一维数组是从0开始的 k = 2i+j-3
        • 第k+个元素 计算第几行第几列
          • 3(i-1)-1 < k+1 <= 3i-1 ==> i >= (k+2)/3 向上取整得第几行
    • 对于一个n*n的矩阵,最多只有n个非0元素,只需存储n个对角元素信息即可。直接采用一维数组d[i]存储M(i,i)的值

  4. 稀疏矩阵

    • 三元组 <行,列,值>定义一个新的结构体

      • 在这里插入图片描述
    • 十字链表 定义一个新的结构体

      • 在这里插入图片描述

      • 在这里插入图片描述

三、字符串

1、朴素模式匹配

思路:

  • 不断比较,如果相同就继续比较,如果不同就重新比较,下标关系为:

    i = i-j+1;				//i-j表示i回到起始前的一个位置      +1表示下一个子串的起始位置 
    j = 0;					//j重新回到0
    
  • 如果最后j等于模式串长度,说明匹配成功,返回 i-tlen,匹配成功的起始位置,不相等,匹配失败

代码:

//1、朴素模式匹配
int NaiveMatch(char *s, char *t){	//s为主串, t为模式串
	int lens = strlen(s), lent = strlen(t);
	int i=0,j=0;
	while(i < lens && j < lent){
		if(s[i] == t[j]){			//匹配成功,继续匹配 
			i++;
			j++;
		}
		else{						//匹配失败,模式串从头开始匹配,主串 
			i = i-j+1;				//i-j表示i回到起始前的一个位置      +1表示下一个子串的起始位置 
			j = 0;					//j重新回到0 
		} 
	} 
	if(j == lent) return i-lent;
	else return 0; 
} 
2、KMP算法

思路:

  • 关键是求失败函数
    • 不断迭代找到当前i所指的值与s[k+]所指的值相同的下标
    • 如果s[i]==s[k+1],匹配上了,失败函数为f[i]的值就为k+1,否则为-1
  • KMP算法前面与朴素模式匹配一样,在匹配成功时或者j==0时,同时+1
  • 如果匹配失败,下一个j的值为失败函数对应的值

代码:

//关键:失败函数
void Fail(char *s, int f[]){
	int len = strlen(s);
	f[0] = -1;
	int i=1,k=0;
	for(i=1; i < len; i++){
		k = f[i-1];						//k指向当前位置的前一个元素,前k项与第i-1往前找k项相同,如果第k+1项与第j项不同 
		while(s[i]!=s[k+1] && k>=0){
			k = f[k];					//迭代求下一个位置,保证k不越界 
		}
		if(s[i] == s[k+1]){				//如果存在,就加1 
			f[i] = k+1;
		}
		else{							//不存在,赋值为-1 
			f[i] = -1;
		}
	}
} 

int KMP(char *s, char *t){			//s为主串,t为模式串 
	int lens = strlen(s), lent = strlen(t);
	int f[lent];
	int i=0,j=0;
	
	Fail(t,f);						//求得失败函数
	while(i<lens && j < lent){
		if(j==0 || s[i] == t[j]){
			i++;
			j++;
		}
		else{
			j = f[j-1]+1;
		}
	} 
	if(j == lent) return i-lent;
	else return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值