一、数组
基本概念
特点:顺序存储,每个元素大小,类型相同,元素有限
高维数组可以转化为一维数组
高维数组存放次序:按行优先或者按列优先
按行优先的寻址公式:
- 二维数组a[m] [n]: Loc(a[i] [j]) = Loc(a[0] [0]) + (i*n+j) * C
- 三维数组a[m] [n] [p]: Loc(a[i] [j] [k]) = Loc(a[0] [0] [0]) + (i*n *p +j * p + k) * C
- a[i1] [i2]…[in] =
按列优先的寻址公式:
- 二维数组a[m] [n]: Loc(a[i] [j]) = Loc(a[0] [0]) + (j*m+i) * C
- 三维数组a[m] [n] [p]: Loc(a[i] [j] [k]) = Loc(a[0] [0] [0]) + (k*m *n +j * m + i) * C
- a[i1] [i2]…[in]=
举例:
A[0:2,0:4,0:10,0:2],A[I] [J] [K] [L] 地址计算公式
按行优先:
*Loc(A)+(165I+33J+3K+L)C
按列优先:
*Loc(A)+ (165L+15K+3J+I)C
二、矩阵
1、矩阵的乘法操作
**思路:**三重for循环实现
//矩阵乘法
void mul(int a[][maxsize], int b[][maxsize], int ans[][maxsize],int a_m, int a_n, int b_m, int b_n){//a_m,a_n为a的行数与列数,b_m,b_n为b的行数与列数
int i,j,k;
for(i=0; i < a_m; i++){ //三重for循环
for(j=0; j < b_n; j++){
for(k=0; k < a_n; k++){
ans[i][j] += a[i][k] * b[k][j];
}
}
}
} //O(n^2*m)
2、特殊矩阵的压缩存储
特殊矩阵:(转化为一阶矩阵存储都是下标从0开始)
-
对称矩阵的压缩存储 (注意是1开头)
-
一共N(N+1)/2元素
-
行优先存储:掌握自己推导
- i>=j d[k] = i(i-1)/2 + (j-1) 下三角区域
- i < j, d[q] = j(j-1)/2 + (i-1) 上三角区域
-
三角矩阵
- 上三角矩阵 i<j M(i,j) = 0
- 寻址方式:
- 行优先:k = n + n-1 + n-i+2 + (j-i)
- 列优先: k = 1+2+…+(j-1)+(i-1)
- 寻址方式:
- 下三角矩阵i>j M(i,j) = 0
- 寻址方式:
- 行优先:k = 1+2+…+(i-1)+(j-1)
- 列优先:k = n + n-1 + n-j+2 + (i-j)
- 寻址方式:
- 上三角矩阵 i<j M(i,j) = 0
-
对角矩阵
-
三对角矩阵(带状矩阵)的压缩存储
-
|i-j|>1时,有ai,j = 0(1<=i,j<=n)
-
行优先
- 前 i-1 行共有3(i-1)-1个元素
- ai,j是第 i 行第j-i+2个元素
- ai,j为2i+j-2个元素, 一维数组是从0开始的 k = 2i+j-3
- 第k+个元素 计算第几行第几列
- 3(i-1)-1 < k+1 <= 3i-1 ==> i >= (k+2)/3 向上取整得第几行
-
对于一个n*n的矩阵,最多只有n个非0元素,只需存储n个对角元素信息即可。直接采用一维数组d[i]存储M(i,i)的值
-
-
稀疏矩阵
-
-
三元组 <行,列,值>定义一个新的结构体
-
十字链表 定义一个新的结构体
-
-
三、字符串
1、朴素模式匹配
思路:
-
不断比较,如果相同就继续比较,如果不同就重新比较,下标关系为:
i = i-j+1; //i-j表示i回到起始前的一个位置 +1表示下一个子串的起始位置 j = 0; //j重新回到0
-
如果最后j等于模式串长度,说明匹配成功,返回 i-tlen,匹配成功的起始位置,不相等,匹配失败
代码:
//1、朴素模式匹配
int NaiveMatch(char *s, char *t){ //s为主串, t为模式串
int lens = strlen(s), lent = strlen(t);
int i=0,j=0;
while(i < lens && j < lent){
if(s[i] == t[j]){ //匹配成功,继续匹配
i++;
j++;
}
else{ //匹配失败,模式串从头开始匹配,主串
i = i-j+1; //i-j表示i回到起始前的一个位置 +1表示下一个子串的起始位置
j = 0; //j重新回到0
}
}
if(j == lent) return i-lent;
else return 0;
}
2、KMP算法
思路:
- 关键是求失败函数
- 不断迭代找到当前i所指的值与s[k+]所指的值相同的下标
- 如果s[i]==s[k+1],匹配上了,失败函数为f[i]的值就为k+1,否则为-1
- KMP算法前面与朴素模式匹配一样,在匹配成功时或者j==0时,同时+1
- 如果匹配失败,下一个j的值为失败函数对应的值
代码:
//关键:失败函数
void Fail(char *s, int f[]){
int len = strlen(s);
f[0] = -1;
int i=1,k=0;
for(i=1; i < len; i++){
k = f[i-1]; //k指向当前位置的前一个元素,前k项与第i-1往前找k项相同,如果第k+1项与第j项不同
while(s[i]!=s[k+1] && k>=0){
k = f[k]; //迭代求下一个位置,保证k不越界
}
if(s[i] == s[k+1]){ //如果存在,就加1
f[i] = k+1;
}
else{ //不存在,赋值为-1
f[i] = -1;
}
}
}
int KMP(char *s, char *t){ //s为主串,t为模式串
int lens = strlen(s), lent = strlen(t);
int f[lent];
int i=0,j=0;
Fail(t,f); //求得失败函数
while(i<lens && j < lent){
if(j==0 || s[i] == t[j]){
i++;
j++;
}
else{
j = f[j-1]+1;
}
}
if(j == lent) return i-lent;
else return 0;
}