使用Ollama + RAGFlow在Windows本地部署

使用Ollama + RAGFlow在Windows本地部署

1、Ollama的下载运行

1、Ollama环境配置

Ollama默认模型文件是存到C盘的,这一步是为了后续Ollama的模型安装可以放在我们自定义的路径里,不需要的可以跳过这一步骤。
(1)打开编辑系统环境变量(可以直接搜索找到,也可以“此电脑”右键属性——高级系统设置)
在这里插入图片描述
(2)点击“环境变量”,在下方的“系统变量”点击新建,新建如图系统变量后一路点总共三次确定结束(变量值可以自己选文件夹,变量名务必保持一致)
在这里插入图片描述

2、Ollama模型的下载安装

1、进入Ollama官网:https://ollama.com/,点击Download选择Windows下载,下载完成后直接双击运行安装就可以完成Ollama的安装
在这里插入图片描述

2、Models的下载安装
(1)点击Ollama官网首页右上角的“Models
在这里插入图片描述
(2)进入如下Ollama模型库,选择自己要下载的模型(这里本人下载的是llama3.2:latest
在这里插入图片描述
(3)复制运行模型的指令
在这里插入图片描述
(4)win+R输入cmd打开终端,运行刚刚复制的指令,Ollama开始下载模型(如果模型已下载就会直接运行模型),最终下载(运行)完成后即可开始问答,Ollama的下载安装就此完成。
在这里插入图片描述

2、RAGFlow的docker容器部署

1、docker desktop的下载安装

(1)进入docker官网:https://www.docker.com/,下载适合自己电脑的版本
在这里插入图片描述
(2)下载完成后双击installer完成安装
但是本人直接安装完的docker一直出现Engine stopped的提示,无法正常运行。
所以建议在运行docker安装前先检查自己电脑的hyper-v有没有正常打开,同时检查自己的WSL有没有升级到WSL2,确保Hyper-v打开和WSL升级到WSL2再运行docker installer,一般这样就能正常打开docker desktop了。
I、Hyper-v的打开
本人当时按这个教程https://www.xitongzhijia.net/xtjc/20220102/237013.html)检查发现电脑根本没有Hyper-v
所以又先绕路安装了一下Hyper-v,参考博客:https://www.cnblogs.com/ZaraNet/p/11918807.html
II、WSL的升级
用管理员身份运行打开Power Shell,执行: wsl --update
系统就会开始自动升级到WSL2,升级完后可以执行: wsl -v 检查结果
在这里插入图片描述
Hyper-v和WSl2都正常的情况下运行刚刚下载的docker installer,“同意协议”后可以直接点击“continue without signing in”进入docker(当然也可以注册再登录,不过注册界面我总刷不出来),docker左下角显示“Engine running”代表正常
在这里插入图片描述

2、RAGFlow的拉取运行

git克隆仓库完成拉取

git clone https://github.com/infiniflow/ragflow.git

运行

cd ragflow/docker
docker compose up -d

完成后运行检查服务器状态

docker logs -f ragflow-server

有类似下图输出并且无报错即可
在这里插入图片描述
此时docker中也可以看到容器正常运行起来了

在这里插入图片描述
在浏览器网址栏输入localhost/knowledge即可访问RAGFlow开始使用

### 部署 RAGFlow 框架于 Windows 操作系统的指南 #### 准备工作 为了在Windows操作系统上成功部署RAGFlow框架,需先安装必要的软件包并配置开发环境。这包括但不限于设置Conda虚拟环境以及安装特定依赖项。 ```bash # 创建新的 Conda 环境命名为ragflow_env 并指定 Python 版本为 3.10 conda create --name ragflow_env python=3.10 # 激活此新创建的 Conda 虚拟环境 conda activate ragflow_env ``` #### 安装依赖库 一旦设置了合适的编程环境,则应继续通过pip工具来获取所需的Python库文件。对于RAGFlow而言,除了基础的数据处理和机器学习库外,还需特别关注那些支持检索增强生成(Retrieval-Augmented Generation, RAG)技术实现的相关组件。 ```bash # 更新 pip 到最新版本以确保兼容性 python -m pip install --upgrade pip # 使用 requirements.txt 文件批量安装项目所需的所有第三方模块 pip install -r path/to/requirements.txt ``` #### 获取源码与初始化 下载官方发布的RAGFlow开源代码仓库至本地计算机,并按照文档指示完成初步设定过程。通常情况下,GitHub等平台会提供详细的README说明帮助开发者快速启动应用实例。 ```git # 克隆 GitHub 上托管的 RAGFlow 库到当前目录下 git clone https://github.com/user/RAGFlow.git cd RAGFlow ``` #### 运行测试案例验证安装成果 最后一步是执行预构建好的脚本来检验整个流程是否顺畅无误。如果一切正常的话,应该能够看到预期的结果输出;若有任何异常提示,则建议参照错误日志排查问题所在之处。 ```python from ragflow import start_example_app start_example_app() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值