使用Ollama + RAGFlow在Windows本地部署

使用Ollama + RAGFlow在Windows本地部署

1、Ollama的下载运行

1、Ollama环境配置

Ollama默认模型文件是存到C盘的,这一步是为了后续Ollama的模型安装可以放在我们自定义的路径里,不需要的可以跳过这一步骤。
(1)打开编辑系统环境变量(可以直接搜索找到,也可以“此电脑”右键属性——高级系统设置)
在这里插入图片描述
(2)点击“环境变量”,在下方的“系统变量”点击新建,新建如图系统变量后一路点总共三次确定结束(变量值可以自己选文件夹,变量名务必保持一致)
在这里插入图片描述

2、Ollama模型的下载安装

1、进入Ollama官网:https://ollama.com/,点击Download选择Windows下载,下载完成后直接双击运行安装就可以完成Ollama的安装
在这里插入图片描述

2、Models的下载安装
(1)点击Ollama官网首页右上角的“Models
在这里插入图片描述
(2)进入如下Ollama模型库,选择自己要下载的模型(这里本人下载的是llama3.2:latest
在这里插入图片描述
(3)复制运行模型的指令
在这里插入图片描述
(4)win+R输入cmd打开终端,运行刚刚复制的指令,Ollama开始下载模型(如果模型已下载就会直接运行模型),最终下载(运行)完成后即可开始问答,Ollama的下载安装就此完成。
在这里插入图片描述

2、RAGFlow的docker容器部署

1、docker desktop的下载安装

(1)进入docker官网:https://www.docker.com/,下载适合自己电脑的版本
在这里插入图片描述
(2)下载完成后双击installer完成安装
但是本人直接安装完的docker一直出现Engine stopped的提示,无法正常运行。
所以建议在运行docker安装前先检查自己电脑的hyper-v有没有正常打开,同时检查自己的WSL有没有升级到WSL2,确保Hyper-v打开和WSL升级到WSL2再运行docker installer,一般这样就能正常打开docker desktop了。
I、Hyper-v的打开
本人当时按这个教程https://www.xitongzhijia.net/xtjc/20220102/237013.html)检查发现电脑根本没有Hyper-v
所以又先绕路安装了一下Hyper-v,参考博客:https://www.cnblogs.com/ZaraNet/p/11918807.html
II、WSL的升级
用管理员身份运行打开Power Shell,执行: wsl --update
系统就会开始自动升级到WSL2,升级完后可以执行: wsl -v 检查结果
在这里插入图片描述
Hyper-v和WSl2都正常的情况下运行刚刚下载的docker installer,“同意协议”后可以直接点击“continue without signing in”进入docker(当然也可以注册再登录,不过注册界面我总刷不出来),docker左下角显示“Engine running”代表正常
在这里插入图片描述

2、RAGFlow的拉取运行

git克隆仓库完成拉取

git clone https://github.com/infiniflow/ragflow.git

运行

cd ragflow/docker
docker compose up -d

完成后运行检查服务器状态

docker logs -f ragflow-server

有类似下图输出并且无报错即可
在这里插入图片描述
此时docker中也可以看到容器正常运行起来了

在这里插入图片描述
在浏览器网址栏输入localhost/knowledge即可访问RAGFlow开始使用

### 部署 DeepSeek 创建多设备访问的公司制度知识库 为了实现这一目标,需考虑几个方面来确保系统的高效性和易用性。对于本地计算机上的部署工作,特别是涉及到像 Ollamaragflow 这样的工具时,有特定的操作流程。 #### 准备环境与安装必要组件 首先,在Windows环境中准备Ollama部署[^1]。这一步骤为后续操作奠定了基础架构层面的支持,使得其他软件和服务可以在其之上顺利运行。 接着,针对ragflow的应用部分,应前往GitHub下载ragflow项目的源代码ZIP文件并将其解压缩到指定路径`C:\xmx\dseek\`下[^2]。此过程引入了一个重要的数据处理框架,有助于增强系统功能。 #### 构建基于1.5B参数模型的知识库服务 考虑到性能因素以及实际应用场景的需求,选用具有约15亿参数规模的语言模型作为核心引擎是一个合理的选择[^3]。这类大小适中的预训练模型既能在普通硬件条件下良好运作,又足以胜任较为复杂的自然语言理解和生成任务。 在此基础上建立起来的服务端程序将负责接收来自不同终端用户的查询请求,并通过调用上述提到的大规模语言模型API接口返回精准的回答内容;与此同时,借助于前端Web开发技术和移动应用程序设计思路,则可以让员工们无论身处何地都能方便快捷地获取所需的企业规章制度信息。 ```bash # 假设已经完成ragflow项目克隆和依赖项安装 cd C:\xmx\dseek\ python app.py # 启动ragflow服务器实例 ``` ```json { "ollama_endpoint": "http://localhost:8000", "model_name": "deepseek-1.5b" } ``` 以上配置片段展示了如何设置连接至本地运行的Ollama API网关地址及所使用的具体模型名称。当一切就绪之后,整个解决方案便具备了跨平台特性——无论是桌面浏览器还是智能手机和平板电脑均能正常接入该企业内部知识管理系统。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值