RAGFlow Windows环境下本地部署全攻略

🌟 一、RAGFlow本地部署的核心价值

1.1 什么是RAG?

RAG 即检索增强生成(Retrieval Augmented Generation),是一种将外部知识检索与大型语言模型(LLM)相结合的技术,由 Meta AI 研究团队于 2020 年提出。RAG 的核心思想是在生成文本之前,先从外部知识源(如文档库、数据库等)中检索与当前查询相关的信息,然后将这些检索到的信息作为额外的上下文输入到大型语言模型中,辅助模型生成更准确、更具事实依据的回答,可以有效解决大语言模型幻觉和时效性问题。

1.1.1 工作流程

  • 查询阶段:用户提出一个问题或需求。
  • 检索阶段:RAG 系统根据用户的查询,从预先构建的知识源中检索出相关的文档片段或信息。这通常涉及到使用信息检索技术,如向量检索,将查询和知识源中的文档都转换为向量表示,然后计算它们之间的相似度,选择最相关的文档。
  • 生成阶段:将检索到的相关信息与用户的查询一起输入到大型语言模型中,模型结合这些上下文信息生成最终的回答。

1.1.2 技术优势

  • 提升回答准确性:通过引入外部知识,模型能够获取更准确和最新的信息,从而生成更符合事实的回答,减少了生成错误信息的可能性。

  • 增强时效性:可以及时更新知识源,使模型能够跟上最新的事件和信息,对于需要实时信息的场景非常有用。

  • 减少训练成本:不需要将大量的知识全部预训练到模型中,而是在运行时动态检索,降低了模型训练的难度和成本。

  • 可解释性:由于检索到的信息是明确的,用户可以查看模型生成回答所依据的来源,提高了回答的可解释性。

1.2 什么是RAGFlow

了解了什么是 RAG,接下来我们就来了解一下 RAGFlow,RAGFlow 作为开源 RAG 引擎,通过深度文档理解多模态检索增强,为 LLM 提供真实可靠的上下文支持。其核心优势包括:

  • 多格式解析:支持PDF、Word、Excel等复杂文档的结构化解析(含OCR和表格识别)
  • 可追溯回答:每个回答均附带引用来源,解决LLM幻觉问题
  • 混合检索策略:结合关键词匹配与向量检索,提升召回率

🖥️ 二、Windows环境部署指南

2.1 系统环境准备

  • 硬件要求
    • CPU:4核以上(x86架构)
    • 内存:16GB+(建议32GB)
    • 磁盘:50GB+(C盘预留空间)
    • Docker >= 24.0.0 & Docker Compose >= v2.26.1

知道了它的硬件要求,那么到底怎么查看自己的电脑配置是否符合要求呢,别急,接下来我们就来一步一步检查,先来查看 CPU 是否满足,查看 CPU 是几核可以用以下三种方法查看(任选其一即可):

  1. 任务管理器:按下 “Ctrl + Shift + Esc” 组合键打开任务管理器,在 “性能” 选项卡中的 “CPU” 信息里可以查看到核数。
    在这里插入图片描述

  2. 系统信息:右击 “此电脑”,选择 “属性”,在窗口中的处理器信息部分可以看到 CPU 核数相关信息。也可在设备管理器中,找到并点击 “处理器” 选项,通过显示的处理器数量来确定 CPU 核数。

  3. 命令提示符:打开命令提示符(“Win + R” 输入 “cmd” 后按回车),输入 “wmic CPU get NumberOfCores,NumberOfLogicalProcessors” 命令,输出会显示核心数(NumberOfCores)和逻辑处理器数(NumberOfLogicalProcessors)。
    在这里插入图片描述

接下来我们来查看一下系统内存是否满足要求,同样有以下几种方法,大家任选其一即可:

  1. 通过系统属性查看:右键点击 “此电脑” 或 “计算机” 图标,选择 “属性”,在弹出的窗口中可看到 “安装内存(RAM)” 的数值,即电脑当前安装的内存大小。

  2. 利用任务管理器查看:按下 “Ctrl + Shift + Esc” 组合键打开任务管理器,切换到 “性能” 选项卡,点击
    “内存”,可查看内存的详细使用情况,如总内存、已用内存、可用内存和内存速度等。
    在这里插入图片描述

  3. 使用命令提示符查看:按下 “Win + R” 组合键,输入 “cmd” 并回车,输入 “systeminfo | findstr
    /C:“Total Physical Memory”” 和 “systeminfo | findstr /C:“Available
    Physical Memory”” 可查看总物理内存和可用物理内存的详细信息。

  4. 通过设置应用查看:点击 “开始” 按钮,选择 “设置”,在设置窗口中点击 “系统”,选择 “关于”,在 “设备规格” 部分可查看 “安装内存(RAM)” 的信息。

接下来再来看看磁盘的空间是否满足:

  1. 通过 “此电脑” 查看:打开 Windows 资源管理器,双击 “此电脑” 图标,在显示的设备列表中,可以看到各个硬盘分区的名称及其对应的已用空间和可用空间。右键点击某个分区,选择 “属性”,可以查看更详细的存储空间使用情况。

  2. 使用磁盘管理工具:按 Win+R 键打开运行对话框,输入 “diskmgmt.msc” 并按回车,打开磁盘管理工具。在这里,可以直观地看到所有硬盘分区的布局、大小及使用情况。

  3. 命令提示符查看:打开命令提示符,输入 “wmic DiskDrive get Size /value”
    命令,可以查看硬盘的总容量,结果以字节为单位显示。

  4. 利用任务管理器查看:按下 “Ctrl + Shift + Esc” 组合键打开任务管理器,切换到 “性能” 选项卡,点击
    “磁盘(C:)”,可查看磁盘的详细使用情况。
    在这里插入图片描述

最后我们来查看一下 Docker Desktop 的版本是否满足要求:

打开终端(在 Windows 上如果使用 Docker Desktop,也可以通过其自带的命令行工具),输入命令 docker desktop -v或 docker version,如果还没安装就会显示 docker 不是内部或外部指令,安装部分我会在下文讲解。

2.2 软件安装:

2.2.1 WSL2+Ubuntu20.04以及Docker Desktop安装

1. 简介

WSL2(Windows Subsystem for Linux 2)是 Windows 提供的一种轻量级 Linux 运行环境,具备完整的 Linux 内核,并支持更好的文件系统性能和兼容性。它允许用户在 Windows 系统中运行 Linux 命令行工具和应用程序,而无需安装虚拟机或双系统。

Docker 是一种轻量级的容器化技术,为开发者提供一致的运行环境,使得软件可以在不同平台上无缝运行,极大地提升了开发和部署的效率。无论是本地开发、测试,还是大规模的云端部署,Docker 都能显著降低环境配置的复杂性,减少依赖冲突问题。

2. 安装
1. 安装 WSL 2

打开 PowerShell(管理员权限):

  • 方法一:使用 Cortana 搜索栏(Windows 10):在任务栏的 Cortana 搜索框中输入
    “PowerShell”,在搜索结果中右键单击 “Windows PowerShell”,选择 “以管理员身份运行”。
  • 方法二:按下 Win+R 键打开运行对话框,输入 “powershell” 后点击 “确定”,此时打开的是普通权限的
    PowerShell。若要提升为管理员权限,需在该窗口中输入命令 “Start - Process powershell - Verb
    runAs” 并按回车键。
  • 方法三:先打开具有管理员权限的命令行窗口,方法是按下 Win+X 组合键,选择 “命令提示符(管理员)”,在打开的命令提示符中输入 “powershell” 并回车,即可打开具有管理员权限的 PowerShell。另外,更新至 Windows 10 创意者版本后,按下 Windows+X 组合键,直接点击 “Windows PowerShell(管理员)” 也可打开。

打开之后运行下面命令,启用 WSL 功能:

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

在这里插入图片描述

解释:

  • /all:在所有用户上启用该功能
  • /norestart:启用功能后不会立即重启

启用虚拟机平台功能,输入命令:

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

在这里插入图片描述
将 WSL 默认版本设置为 WSL2(视系统型号而定)

wsl --set-default-version 2
  • Windows 11 默认已安装 WSL2,不需要执行该命令。
  • Windows 10 用户 需要执行此命令,否则默认使用 WSL1。

为了保证以上命令执行完成后,请重启电脑,以确保所有更改生效。

2. 安装 Ubuntu-20.04

在安装之前先创建文件夹,保证后续的迁移路径:
D盘 创建 WSL 文件夹,并在该文件夹下创建 Ubuntu-20.04 文件夹。
在这里插入图片描述

在安装 Ubuntu-20.04 之前首先得查看可用的 WSL 发行版,打开 PowerShell(管理员权限),运行下面命令:

wsl --list --online

在这里插入图片描述

安装 Ubuntu-20.04:

wsl --install -d Ubuntu-20.04

如果在这一步显示操作超时,大概率是没打开 Windows 虚拟机监控程序平台,可以在控制面板–>程序和功能里面打开
在这里插入图片描述
在这里插入图片描述
打开后重启再次安装就可以了,这一步稍微有点慢,需要等待一会,等待安装成功后界面如下:
在这里插入图片描述
等待启动完成后,会弹出 Ubuntu 界面并要求你创建新用户,安装要求输入用户名和密码然后按 Ctrl + D 退出即可:
在这里插入图片描述
然后导出 Ubuntu-20.04 为 .tar 文件:

wsl --export Ubuntu-20.04 D:\WSL\Ubuntu-20.04\Ubuntu-20.04.tar

这会下载 Ubuntu-20.04 并将其导出到 D:\WSL\Ubuntu-20.04\Ubuntu-20.04.tar,然后可以执行ls D:\WSL\Ubuntu-20.04查看Ubuntu-20.04.tar已经成功导出。
在这里插入图片描述
取消注册原有的 Ubuntu-20.04,如果你已经安装了 Ubuntu-20.04(默认在 C 盘),可以将其从 WSL 注销::

wsl --unregister Ubuntu-20.04

在这里插入图片描述
等待注销完成后我们就可以导入 Ubuntu-20.04 到 D 盘:

wsl --import Ubuntu-20.04 D:\WSL\Ubuntu-20.04 D:\WSL\Ubuntu-20.04\Ubuntu-20.04.tar --version 2

安装成功后,会在 D:\WSL\Ubuntu-20.04 目录下,WSL2 发行版的文件存储在一个 虚拟磁盘映像文件(ext4.vhdx) 中,该文件用于存储整个 Ubuntu-20.04 文件系统,如下图所示:
在这里插入图片描述
导入完成后,你可以输入一下命令启动 WSL:

wsl -d Ubuntu-20.04

但是这一般有个问题,就是启动后显示为root权限:
在这里插入图片描述
这是因为 WSL 手动导入的 Ubuntu 不会自动创建普通用户,需要我们手动创建,创建新用户,在 WSL 终端(默认 root)下运行:

adduser yourusername # yourusername用自己想创建的名字

在创建好用户之后我们在给它赋上权限即可:

usermod -aG sudo yourusername # yourusername用自己创建的名字

在上述操作完成后我们需要更改默认登录用户,设置为刚设置的普通用户,这里要记得是重新打开 PowerShell(管理员权限)然后输入:

ubuntu2004 config --default-user yourusername # yourusername用自己创建的名字

再次启动 WSL 测试一下是否设置成功:

wsl -d Ubuntu-20.04

在这里插入图片描述
可以看到以及设置成功了,到这里 Ubuntu-20.04 算是彻底安装成功了。

3. Docker Desktop安装 + 汉化完整指南

Docker Desktop:是 Docker 官方为桌面操作系统(如 Windows 和 macOS)专门开发的一款应用程序。它基于 Docker 核心技术构建,为用户提供了便捷的方式来使用 Docker 的各项特性,接下来我们就来安装 Docker Desktop。

在 Windows 上使用 Docker Desktop 依赖 WSL 2 作为后端运行环境。因此,在安装 Docker Desktop 之前,就需要先 安装 WSL 2 并配置至少一个 Linux 发行版(如 Ubuntu),所以这也是我们上面安装 WSL 2 以及 Ubuntu 的原因。

  1. 下载

安装 Docker Desktop 首先需要进入官网下载:https://www.docker.com/
点击页面上的“Download for Windows - AMD64”按钮,以下载适用于 Windows 系统的 Docker Desktop 安装文件。
在这里插入图片描述

  1. 安装

双击下载的安装文件,开始安装 Docker Desktop。
安装过程如下,这里不过多赘述,建议按一下步骤直接点就可以:
在这里插入图片描述

解释:

  • 使用WSL2代替 Hyper-V (推荐)
  • 允许使用 Windows 容器进行此安装
  • 添加快捷方式到桌面

然后等待安装完成重启即可。
在这里插入图片描述

  1. 配置

首次打开时,将出现 Docker 订阅协议,点击 Accept(接受)以继续。
随后,系统将提示用户登录。您可以选择使用 GitHub 账户或 Google 账户登录,若无上述账户,可选择跳过登录步骤。
在这里插入图片描述
接下来,会出现调查问卷,您可以根据个人喜好选择填写,或直接跳过此步骤。
在这里插入图片描述
到这一步就算是结束了 Docker Desktop 已经正常启动。
在这里插入图片描述
下面是汉化步骤,根据个人情况自取:

  1. 汉化

访问 GitHub,下载适用于 Docker Desktop 的中文语言包,链接地址为:https://github.com/asxez/DockerDesktop-CN
在这里插入图片描述
将下载的文件解压至 C:\Program Files\Docker 目录下(即 Docker 的安装根目录)。
在这里插入图片描述
然后关闭 Docker Desktop,在Docker安装目录找到 app.asar 文件并将其备份,防止出现意外,Windows下默认为 C:\Program Files\Docker\Docker\frontend\resources:
在这里插入图片描述
将从本仓库下载的asar文件改名为 app.asar 后替换原文件,最后效果如图:
在这里插入图片描述

2.2.2 Git与VSCode安装

1. 简介

Git是一款免费开源的分布式版本控制系统,常用于软件开发。它能记录文件在不同时间的改动,让用户在需要时查看、恢复旧版本。支持多人协作开发,多人可同时修改项目文件,Git会处理好冲突。开发者能在本地创建分支进行功能开发,完成后再合并到主分支。像许多大型软件项目、开源项目都用Git管理代码。

Visual Studio Code(简称VS Code)是一款由微软开发的免费开源的跨平台代码编辑器。它具有简洁易用的界面,支持多种编程语言,如Python、Java、C++、JavaScript等。VS Code拥有丰富的扩展生态系统,通过安装不同的扩展插件,能够实现代码调试、代码分析、版本控制(如集成Git)、代码格式化、智能代码补全等功能,还支持在编辑器中直接进行终端操作。它广泛应用于软件开发、网页开发、数据科学等多个领域,深受开发者喜爱,是一款非常流行的开发工具。

2. 安装
  • Git官网下载,安装后配置环境变量
    官网界面如下,点击 Click here to download(单击此处下载,默认下载为最新版本):在这里插入图片描述
    不过官网需要科学上网,不然大概率会出现下面的情况:
    在这里插入图片描述
    这里可以访问阿里镜像,直接翻到最后找最新版(2.49.0):
    在这里插入图片描述
    进入之后,直接点击下载第一个即可:
    在这里插入图片描述
    下载完成之后,双击打开进入安装界面,第一个界面主要展示了 GPL 第 2 版协议1的内容,直接 next 就行。
    在这里插入图片描述
    这一步选择安装的位置,选择自己想要的安装到的文件夹即可,最简单的方法就是将 C 改为 D,然后 next:
    在这里插入图片描述
    下面就是要自己勾选的内容了,基本上不用更改,我也翻译出来了,大家也可以根据自己的需要进行勾选:
    在这里插入图片描述

解释:

  • 附加图标
    • 在桌面上显示
  • Windows 资源管理器集成
    • 在此处打开 Git Bash
    • 在此打开 Git GUl
  • GitLFS(大文件支持)
  • 将.git*配置文件与默认文本编辑器关联
  • 将.sh文件与Bash一起运行
  • 每天检查 GitforWindows 更新
  • (新!)将 GitBash配置文件添加到Windows终端
  • (新!)Scalar(用于管理大型存储库的Git附加组件)

当前选择至少需要 352.9 MB 的磁盘空间。

这一步是选择菜单开始文件夹,直接 next 他会在开始菜单生成一个 Git 文件夹:
在这里插入图片描述
这一步是选择 Git 编辑器,Git 安装程序里面内置了 10 种编辑器供你挑选,比如 Atom、Notepad、Notepad++、Sublime Text、Visual Studio Code、Vim 等等,默认的是 Vim ,选择 Vim 后可以直接进行到下一步,但是 Vim 是纯命令行,操作有点难度,需要学习。如果选其他编辑器,则还需要去其官网安装后才能进行下一步,因为没使用科学上网,我直接 next,有需要的也可以勾选其他编辑器去官网下载。
在这里插入图片描述
这一步是选择初始化新项目(仓库)的主干名字,第一种是让 Git 自己选择,名字是 master ,但是未来也有可能会改为其他名字;第二种是我们自行决定,默认是 main,当然,你也可以改为其他的名字。一般默认第一种,点击 next 到第七步。
在这里插入图片描述
这一步是调整 path 环境变量,默认选择第二种即可,不用进行更改:
在这里插入图片描述

解释:

  • 仅从 Git Bash 使用 Git
    • 这是最谨慎的选择,因为您的 PATH 根本不会被修改。您将只能使用 Git Bash 中的 Git 命令行工具。
  • 从命令行以及第三方软件进行 Git
    • (推荐)此选项仅将一些最小的 Git 包装器添加到PATH中,以避免使用可选的 Unix 工具使环境混乱。 您将能够使用 Git Bash 中的 Git,命令提示符和 Windov PowerShell 以及在 PATH 中寻找 Git 的任何第三方软件。
  • 使用命令提示符中的 Git 和可选的 Unix 工具
    • Git 和可选的 Unix 工具都将添加到您的 PATH 中。

警告:这将覆盖 Windows 工具,例如 “find” and “sort”. 仅在了解其含义后使用此选项。

这一步是选择 SSH 执行文件,直接默认即可,不用进行更改,然后 next:
在这里插入图片描述

解释:

  • 使用捆绑的 OpenSSH
    • 这使用的 ssh.exe 是 Git 自带的
  • 使用外部 OpenSSH
    • 新!这使用外部 ssh.exe 文件,Git 不会安装自己的 OpenSSH(和相关)二进制文件,而是使用在环境变量 PATH 中找到的它们。

这里是选择HTTPS后端传输,这一步需要注意,如果是是普通用户只使用 Git 访问用公共存储库(例如 GitHub ),选择 use the openssl library,然后 next 即可,如果在具有企业管理证书的组织中使用 Git,并且企业组织管理自己的证书就选择第二个,这里我选择的第一个:
在这里插入图片描述

解释:

  • 使用 OpenSSL 库
  • 服务器证书将使用 ca-bundle.crt 文件进行验证。
  • 使用本机 Windows 安全通道库
    • 服务器证书将使用 Windows 证书存储进行验证。
    • 此选项还允许您使用公司内部分发的内部根 CA 证书,例如通过 Active Directory 域服务。

这里是配置行尾符号转换,这里依然保持默认不做更改,然后 next:
在这里插入图片描述

解释:

  • 签出 Windows 样式,提交 Unix 样式的行结尾
    • Git 签出文本文件时,会将 LF 转换为 CRLF。提交文本文件时,CRLF 将转换为 LF。对于跨平台项目,这是 Windows 上的建议设置(“core.autocrif” 设置为 “true”)。
  • 按原样签出,提交 Unix 样式的行结尾
    • Git 在签出文本文件时不会执行任何转换。提交文本文件时,CRLF 将转换为 LF。对于跨平台项目,这是在 Unix 上的建议设置(“core.autocrif” 设置为 “input”)。
  • 按原样签出,按原样提交
    • Git 在签出或提交文本文件时不会执行任何转换。不建议跨平台项目选择此选项(“core.autocrif” 设置为 “false”)。

这一步是配置终端模拟器以与 Git Bash 一起使用,不做更改,直接 next:
在这里插入图片描述

解释:

  • 使用 MinTTY(MSYS2的默认终端)
    • Git Bash 将使用 MinTTY 作为终端仿真器,该仿真器具有可调整大小的窗口非矩形选择和 Unicode 字体。 Windows 控制台程序(例如交互式 Python)必须通过 “winpty” 启动才能在 MinTTY 中运行。
  • 使用 Windows 的默认控制台窗口
    • Git 将使用 Windows 的默认控制台窗口(“cmd.exe”),该窗口可与 Win32 控制台程序(例如交互式Python 或 node.js)一起使用,但默认回滚非常有限,需要将其配置为使用 Unicode 字体才能正确显示非 ASCII 字符,并且在
      Windows 10 之前,其窗口不可随意调整大小,并且仅允许选择矩形文本。

这里不做更改,直接点击 next 即可:
在这里插入图片描述

解释:

  • 默认(快进或合并)
    • 这是 “git pull” 的标准行为:在可能的情况下将 当前分支 快进到 获取的分支,否则创建合并提交。
  • Rebase
    • 变基将当前分支变基到获取的分支上。如果没有本地提交要变基,则等同于快进。
  • Only ever fast-forward
    • 只能快进快进到获取的分支。如果不可能,则失败。

这里我们选择一个凭证帮助程序即可:
在这里插入图片描述

解释:

  • Git 凭证管理
    • 使用跨平台的 Git 凭证管理。
    • 在此处查看有关 Git 凭证管理未来的更多信息。
  • None
    • 不使用凭证助手。

这一步是为 Git 配置额外的选项,也保持默认即可:
在这里插入图片描述

解释:

  • 启用文件系统缓存
    • 将批量读取文件系统数据并将其缓存在内存中以进行某些操作("core.fscache” 设置为 “true”)。 这可以显着提高性能。
  • 启用符号链接
    • 启用符号链接(需要SeCreateSymbolicLink权限)。
    • 请注意,现有存储库不受此设置的影响。

接下来等待安装成功即可。
在这里插入图片描述

  • VSCode官网下载
    VSCode安装较为简单,这里不过多赘述,下面直接进入正题

2.3 关键配置调整

  1. Step 1:优化WSL内存
    第一步先在当前用户的主目录下创建.wslconfig 文件,通常路径是C:\Users\你的用户名 。确保文件名为.wslconfig,无其他扩展名,创建好后在你创建的 .wslconfig 下新建一个文本把下面的内容粘贴进去即可,这里需要注意的是必须是 .wslconfig(无扩展名,记事本可能默认添加 .txt,需手动删除),这一点要记住。
[wsl2]
memory=16GB         # 分配内存
processors=8        # CPU核心数也可以选用4核根据自己电脑情况
swap=0              # 禁用交换文件
localhostForwarding=true

在这里插入图片描述

  1. Step 2:配置Docker镜像加速
    如果你没有科学上网,可配置下面的镜像源,具体配置步骤如下:

    1. 点击系统托盘(Windows 任务栏右侧)或菜单栏中的 Docker 图标;

    2. 选择 Settings(Windows(代表设置,如果你安装时进行了汉化则直接点击设置即可));

    3. 在左侧导航栏中找到并点击 Docker Engine(或 Engine);

    4. 你会看到一个 JSON 格式的配置文件(默认内容类似 { “experimental”: false });

    5. 在 JSON 中添加 registry-mirrors 字段,将国内镜像地址(如 https://registry.docker-cn.com)作为值:

      # 在Docker Desktop设置中添加镜像源
      {
        "registry-mirrors": ["https://registry.docker-cn.com"]
      }
      
    6. 点击 Apply & Restart(应用并重启)按钮,Docker Desktop 会自动重启并加载新配置,如下图所示。
      在这里插入图片描述

    7. 验证配置是否生效,在 PowerShell 中执行以下命令,查看是否包含添加的镜像源:

      docker info | Select-String "Registry Mirrors"
      

    3. Step 2:部署流程
    打开准备好的盘(最好为 C 盘,如无其他盘 C 盘也可),右键单击选择在终端中打开(或者进入之后直接在搜索栏输入 cmd),在Bash中逐行输入(这里一定要使用科学上网):

    # 克隆代码库
    git clone https://github.com/infiniflow/ragflow.git
    cd ragflow/docker
    
    # 切换稳定版本(推荐v0.16.0)
    git checkout -f v0.16.0
    
    # 编辑环境变量(使用VSCode打开当前目录)
    code .
    

    如果实在不方便科学上网,可去这个地址: https://github.com/infiniflow/ragflow 点击绿色的 Code 按钮 → Download ZIP,直接下载仓库 ZIP 包,然后解压后在本地初始化 Git 仓库。

    cd ragflow
    git init
    git add .
    git commit -m "Initial commit"
    

    最后在执行下述命令:

    cd ragflow/docker
    	
    # 切换稳定版本(推荐v0.16.0)
    git checkout -f v0.16.0
    	
    # 编辑环境变量(使用VSCode打开当前目录)
    code .
    

    接下来 vscode 会自动打开,此时我们要找到.env文件,修改第84行,在最前面加上#,第87行最前面删除#。保存文件。

    # 修改.env文件:
    # 第84行:# RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim
    # 第87行:RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0
    

    然后在刚刚的终端中输入

    # 启动服务
    docker compose -f docker-compose.yml up -d
    

    等待docker自动拉取映像,此时最好保证科学网络环境良好,多次出现错误是正常的现象,更换节点重新输入命令拉取即可,最后验证一下状态即可。

    # 验证服务状态
    docker ps
    # 应显示ragflow-server、ragflow-es-01、ragflow-mysql、ragflow-minio四个容器
    

    或者输入:

    docker logs -f ragflow-server
    

    如果出现如下标识,则证明安装成功:

         ____   ___    ______ ______ __
        / __ \ /   |  / ____// ____// /____  _      __
       / /_/ // /| | / / __ / /_   / // __ \| | /| / /
      / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ /
     /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/
    

4. 访问与配置

  • 打开浏览器访问:http://localhost
    在这里插入图片描述

  • 注册登录后进入系统设置:

    • 模型配置:添加DeepSeek等LLM的API Key
    • 知识库管理:创建知识库并上传文件(支持PDF、Word等格式)
    • AI助理设置:配置检索策略和多轮对话优化

⚠️ 三、常见问题解决方案

1. 内存不足导致服务崩溃

  • 症状:容器频繁重启,日志出现内存不足提示
  • 解决方案
    # 编辑.wslconfig文件(用户目录)
    [wsl2]
    memory=24GB         # 增加内存分配
    

2. 依赖下载失败

  • 症状:拉取Docker镜像时超时或中断
  • 解决方案
    # 国内用户使用清华源
    docker compose -f docker-compose.yml up -d --pull always
    

3. 文档解析停滞

  • 症状:文件解析卡在1%或99%
  • 解决方案
    # 检查Elasticsearch状态
    docker logs -f ragflow-es-01
    
    # 调整内存限制(编辑.env文件)
    MEM_LIMIT=4g
    

4. 无法连接服务

  • 症状:浏览器显示404错误
  • 解决方案
    # 检查端口占用
    netstat -ano | findstr :80
    # 修改docker-compose.yml中的端口映射
    ports:
      - "8080:80"
    

🚀 四、性能优化与高级技巧

1. 硬件加速配置

  • GPU加速
    # 安装NVIDIA Docker
    distribution=$(. /etc/os-release; echo $ID$VERSION_ID)
    curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
    curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
    sudo apt-get update
    sudo apt-get install -y nvidia-container-toolkit
    sudo systemctl restart docker
    

2. 多模型集成

  • 本地模型(Ollama)
    # 启动Ollama服务
    docker run -d -p 11434:11434 ghcr.io/jmorganca/ollama:latest
    
    # 在RAGFlow中配置
    模型提供商 → OpenAI-API-Compatible → http://localhost:11434
    

3. 版本升级

# 拉取最新代码
git fetch origin
git checkout v0.18.0

# 重启服务
docker compose down
docker compose up -d

📚 五、资源与社区支持

💡 总结

通过本文的部署指南,你可以在Windows系统上快速搭建RAGFlow,并通过优化配置和问题解决技巧提升服务稳定性。在实际应用中,建议结合以下策略:

  1. 硬件规划:为WSL分配足够内存(推荐16GB+)
  2. 网络优化:使用国内镜像源加速依赖下载
  3. 模型管理:混合使用本地模型与云端API降低成本
  4. 监控与日志:定期检查容器状态和系统日志

常见错误代码速查表

  • CUDA_ERROR_INVALID_DEVICE:检查显卡兼容性
  • cuDNN version mismatch:重新安装匹配的cuDNN版本
  • pip install timeout:切换国内镜像源或使用代理

通过RAGFlow的本地部署,你可以构建安全可控的企业级知识问答系统,实现从文档解析到智能回答的全流程管理。


参考文章:
https://zhuanlan.zhihu.com/p/26895236013
https://blog.csdn.net/Natsuago/article/details/145588600
https://blog.csdn.net/Natsuago/article/details/145594631?spm=1001.2014.3001.5501
https://blog.csdn.net/mukes/article/details/115693833

<think>嗯,用户想了解如何在Windows本地部署RAGFlow。我需要先回顾一下之前提供的引用内容,确保信息准确。引用1提到了使用Docker Compose启动RAGFlow,而引用2则是在Windows 11上通过运行Python脚本和npm命令来部署。用户可能对这两种方法都感兴趣,或者需要更详细的步骤。 首先,我得确认用户的环境是否支持Docker。如果用户已经安装了Docker Desktop,那么方法一可能更简便。但如果用户没有Docker或者更倾向于直接运行代码,方法二可能更适合。需要分步骤说明两种方法,并指出各自的优缺点。 另外,用户可能不熟悉Docker,所以需要详细说明如何安装Docker Desktop,如何验证安装是否成功,以及如何运行docker-compose命令。对于方法二,要确保Python和Node.js的环境配置正确,并指导如何启动后端和前端服务。 还要注意路径问题,用户可能需要克隆GitHub仓库,所以需要给出仓库的链接或指引。同时,常见问题部分也很重要,比如端口冲突、依赖安装失败等,这些能帮助用户自行排查问题。 最后,生成的相关问题需要覆盖用户可能进一步的需求,比如配置优化、开发模式调试以及与其他工具整合。这样用户可以在部署成功后继续深入使用RAGFlow。</think>以下是在Windows系统本地部署RAGFlow的详细教程,整合了两种主流方法: ### 方法一:Docker容器化部署(推荐) 1. **安装Docker Desktop** - 访问[官网](https://www.docker.com/products/docker-desktop)下载安装包 - 安装时勾选"Use WSL 2"选项以提升性能[^1] - 验证安装:`docker --version` 应返回版本号 2. **获取RAGFlow部署文件** ```bash git clone https://github.com/infiniflow/ragflow.git cd ragflow/deploy/docker ``` 3. **启动服务** ```bash docker compose -f docker-compose.yml up -d # 后台运行容器[^1] ``` 4. **验证部署** - 访问 `http://localhost:8080` - 查看日志:`docker compose logs -f` ### 方法二:原生环境部署 1. **环境准备** - Python 3.8+:安装时勾选"Add to PATH" - Node.js 16+:通过[nvm-windows](https://github.com/coreybutler/nvm-windows)管理版本 - MySQL 8.0:建议使用[Windows Installer](https://dev.mysql.com/downloads/installer/) 2. **后端服务启动 ```python # 安装依赖 pip install -r api/requirements.txt # 启动异步任务处理器 python api/task_executor.py # 启动API服务 python api/ragflow_server.py # 默认端口8080[^2] ``` 3. **前端服务启动 ```bash cd web-ui npm install npm run dev # 开发模式运行[^2] ``` ### 配置要点 1. **数据库连接配置** 修改`config/db_config.ini`: ```ini [database] host = localhost port = 3306 user = root password = your_password ``` 2. **文件存储路径** ```yaml # docker-compose.yml volumes: - ./data:/app/data # 本地持久化存储[^1] ``` ### 常见问题排查 - **端口冲突**:修改`docker-compose.yml`中的端口映射或停止占用端口的进程 - **依赖安装失败**:使用清华镜像源`pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple` - **WSL2内存不足**:在`%UserProfile%/.wslconfig`中添加: ``` [wsl2] memory=4GB swap=2GB ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值