floyd

大雪菜的课(笔记)

搜索与图论(二)

1.最短路

(6).floyd

模板(floyd算法 —— 模板题 AcWing 854. Floyd求最短路)

时间复杂度是 O(n3), n 表示点数

初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
AcWing854. Floyd求最短路

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。
数据保证图中不存在负权回路。

输入格式
第一行包含三个整数n,m,k
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。

输出格式
共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。

数据范围
1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1

#include <iostream>
#include <string.h>
using namespace std;
const int N=210,INF=1e9+10;
int n,m,q;
int d[N][N];
void floyd(){
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
int main()
{
    cin>>n>>m>>q;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i==j)    d[i][j]=0;
            else    d[i][j]=INF;
    while(m--){
        int a,b,c;
        cin>>a>>b>>c;
        d[a][b]=min(d[a][b],c);
    }
    floyd();
    while(q--){
        int a,b;
        cin>>a>>b;
        if(d[a][b]>INF/2)   cout<<"impossible";
        else    cout<<d[a][b];
        cout<<endl;
    }
    return 0;
}
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页