floyd算法

转自:https://blog.csdn.net/zhongkeli/article/details/8832946

这个算法主要要弄懂三个循环的顺序关系。

弗洛伊德(Floyd)算法过程:
1、用D[v][w]记录每一对顶点的最短距离。
2、依次扫描每一个点,并以其为基点再遍历所有每一对顶点D[][]的值,看看是否可用过该基点让这对顶点间的距离更小。

算法理解:

最短距离有三种情况:
1、两点的直达距离最短。(如下图<v,x>)
2、两点间只通过一个中间点而距离最短。(图<v,u>)
3、两点间用通过两各以上的顶点而距离最短。(图<v,w>)

对于第一种情况:在初始化的时候就已经找出来了且以后也不会更改到。
对于第二种情况:弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短,也就是遍历了图中所有的三角形(算法中对同一个三角形扫描了九次,原则上只用扫描三次即可,但要加入判断,效率更低)。
对于第三种情况:如下图的五边形,可先找一点(比如x,使<v,u>=2),就变成了四边形问题,再找一点(比如y,使<u,w>=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。

结合代码 并参照上图所示 我们来模拟执行下 这样才能加深理解:
第一关键步骤:当k执行到x,i=v,j=u时,计算出v到u的最短路径要通过x,此时v、u联通了。
第二关键步骤:当k执行到u,i=v,j=y,此时计算出v到y的最短路径的最短路径为v到u,再到y(此时v到u的最短路径上一步我们已经计算过来,直接利用上步结果)。
第三关键步骤:当k执行到y时,i=v,j=w,此时计算出最短路径为v到y(此时v到y的最短路径长在第二步我们已经计算出来了),再从y到w。

依次扫描每一点(k),并以该点作为中介点,计算出通过k点的其他任意两点(i,j)的最短距离,这就是floyd算法的精髓!同时也解释了为什么k点这个中介点要放在最外层循环的原因.

对于这个算法,网上有一个证明的版本:

 floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在),floyd算法加入了这个概念  Ak(i,j):表示从i到j中途不经过索引比k大的点的最短路径。

    这个限制的重要之处在于,它将最短路径的概念做了限制,使得该限制有机会满足迭代关系,这个迭代关系就在于研究:假设Ak(i,j)已知,是否可以借此推导出Ak-1(i,j)。

    假设我现在要得到Ak(i,j),而此时Ak(i,j)已知,那么我可以分两种情况来看待问题:1. Ak(i,j)沿途经过点k;2. Ak(i,j)不经过点k。如果经过点k,那么很显然,Ak(i,j) = Ak-1(i,k) + Ak-1(k,j),为什么是Ak-1呢?因为对(i,k)和(k,j),由于k本身就是源点(或者说终点),加上我们求的是Ak(i,j),所以满足不经过比k大的点的条件限制,且已经不会经过点k,故得出了Ak-1这个值。那么遇到第二种情况,Ak(i,j)不经过点k时,由于没有经过点k,所以根据概念,可以得出Ak(i,j)=Ak-1(i,j)。现在,我们确信有且只有这两种情况---不是经过点k,就是不经过点k,没有第三种情况了,条件很完整,那么是选择哪一个呢?很简单,求的是最短路径,当然是哪个最短,求取哪个,故得出式子:

    Ak(i,j) = min( Ak-1(i,j), Ak-1(i,k) + Ak-1(k,j) )

    现在已经得出了Ak(i,j) = Ak-1(i,k) + Ak-1(k,j)这个递归式,但显然该递归还没有一个出口,也就是说,必须定义一个初始状态,事实上,这个初始状态取决于索引k是从0开始还是从1开始,上面的代码是C写的,是以0为开始索引,但一般描述算法似乎习惯用1做开始索引,如果是以1为开始索引,那么初始状态值应设置为A0了,A0(i,j)的含义不难理解,即从i到j的边的距离。也就是说,A0(i,j) = cost(i,j) 。由于存在i到j不存在边的情况,也就是说,在这种情况下,cost(i,j)无限大,故A0(i,j) = oo(当i到j无边时)

    到这里,已经列出了求取Ak(i,j)的整个算法了,但是,最终的目标是求dist(i,j),即i到j的最短路径,如何把Ak(i,j)转换为dist(i,j)?这个其实很简单,当k=n(n表示索引的个数)的时候,即是说,An(i,j)=dist(i,j)。那是因为当k已经最大时,已经不存在索引比k大的点了,那这时候的An(i,j)其实就已经是i到j的最短路径了。

    从floyd算法中不难看出,要设计一个好的动态规划算法,首先需要研究是否能把目标进行重新诠释(这一步是最关键最富创造力的一步),转化为一个可以被分解的子目标,如果可以转化,就要想办法寻找数学等式使目标收敛为子目标,如果这一步可以实现了,还需要研究该递归收敛式的出口,即初始状态是否明确(这一步往往已经简单了)。


如果需要保存最短路径,需要借助path数组:

其中我们用 path 数组记录 经过路径 其实 path 的定义如下  path[i][j]  = k 表示 是最短路径 i-……j  和 j 的直接 前驱  为 k 即是: i-->...............-->k ->j

举例子:

如  1-> 5->4   4->3->6  此时 path[1][6] = 0 ; 0表示 1->6 不通  当我们 引入 节点 k = 4 此时有 1->5->4->3->6 显然有 paht[1][6] = 3 = paht[4][6] = paht[k][6]

于是有 path[i][j] = path[k][j] 

对于 1->5 相邻边 我们可以在初始化时候 有 paht[1][5] = 1;

如是对于 最短路径 1->5->4->3->6 有 paht[1][6] = 3; paht[1][3]= 4; paht[1][4] = 5; paht[1][5] =1 如此逆推不难得到 最短路径记录值 。


 
 
  1. #include "iostream"
  2. #include "vector"
  3. #include "stack"
  4. #include "fstream"
  5. using namespace std;
  6. std:: vector< vector< int> > weight;
  7. std:: vector< vector< int> > path;
  8. int vertexnum;
  9. int edgenum;
  10. const int intmax = 10000;
  11. void initialvector(){
  12. weight.resize(vertexnum); //路径权重数组
  13. path.resize(vertexnum); //保存最短路径数组,记录前继
  14. for( int i = 0;i < vertexnum;i++){ //建立数组
  15. weight[i].resize(vertexnum,intmax);
  16. path[i].resize(vertexnum, -1);
  17. }
  18. }
  19. void getData(){ //获取数据
  20. ifstream in("data");
  21. in>>vertexnum>>edgenum;
  22. initialvector();
  23. int from,to;
  24. double w;
  25. while(in>>from>>to>>w){
  26. weight[from][to] = w;
  27. path[from][to] = from; //to的前继是from
  28. weight[from][from] = 0; //自身到自身的权重为0
  29. path[from][from] = from;
  30. weight[to][to] = 0;
  31. path[to][to] = to;
  32. }
  33. }
  34. void floyd(){
  35. for( int k = 0;k < vertexnum;k++)
  36. for( int i= 0;i < vertexnum;i++)
  37. for( int j = 0;j < vertexnum;j++){
  38. if((weight[i][k] > 0 && weight[k][j] && weight[i][k] < intmax && weight[k][j] < intmax) && (weight[i][k] + weight[k][j] < weight[i][j])){ //前面一部分是防止加法溢出
  39. weight[i][j] = weight[i][k] + weight[k][j];
  40. path[i][j] = path[k][j];
  41. }
  42. }
  43. }
  44. void displaypath(int source,int dest){
  45. stack< int> shortpath;
  46. int temp = dest;
  47. while(temp != source){
  48. shortpath.push(temp);
  49. temp = path[source][temp];
  50. }
  51. shortpath.push(source);
  52. cout<< "short distance:"<<weight[source][dest]<< endl<< "path:";
  53. while(!shortpath.empty()){
  54. cout<<shortpath.top()<< " ";
  55. shortpath.pop();
  56. }
  57. }
  58. int main(int argc, char const *argv[])
  59. {
  60. getData();
  61. for( int i = 0;i < vertexnum;i++){
  62. for( int j = 0;j < vertexnum;j++){
  63. cout<<weight[i][j]<< "\t";
  64. }
  65. cout<< endl;
  66. }
  67. floyd();
  68. displaypath( 2, 1);
  69. return 0;
  70. }

数据:

6 9
0 1 3
0 3 4
0 5 5
1 2 1
1 5 5
2 3 5
3 1 3
4 3 3
4 5 2
5 3 2
参考:http://chenchuangfeng.iteye.com/blog/1816976

http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

http://blog.csdn.net/start0609/article/details/7779042

http://blog.csdn.net/niushuai666/article/details/6772706

http://nopainnogain.iteye.com/blog/1047818

http://blog.csdn.net/earbao/article/details/8114861

http://blog.csdn.net/roofalison/article/details/5651806





  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值