大雪菜的课(笔记)
搜索与图论(三)
4.匈牙利算法
(1).模板(匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配)
时间复杂度是 O(nm), n 表示点数,m 表示边数
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;
}
AcWing861. 二分图的最大匹配
给定一个二分图,其中左半部包含n1个点(编号1n1),右半部包含n2个点(编号1n2),二分图共包含m条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
输入格式
第一行包含三个整数 n1、 n2 和 m。
接下来m行,每行包含两个整数u和v,表示左半部点集中的点u和右半部点集中的点v之间存在一条边。
输出格式
输出一个整数,表示二分图的最大匹配数。
数据范围
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤105
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2
#include <iostream>
#include <string.h>
using namespace std;
const int N=510,M=100010;
int e[M],ne[M],idx,h[N];
int n,m,q;
int match[N];
bool st[N];
void add(int a,int b){
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool find(int x){
for(int i=h[x];i!=-1;i=ne[i]){
int j=e[i];
if(!st[j]){
st[j]=true;
if(match[j]==0||find(match[j])){
match[j]=x;
return true;
}
}
}
return false;
}
int main()
{
cin>>n>>m>>q;
memset(h,-1,sizeof h);
while(q--){
int a,b;
cin>>a>>b;
add(a,b);
}
int res=0;
for(int i=1;i<=n;i++){
memset(st,false,sizeof st);
if(find(i)) res++;
}
cout<<res;
return 0;
}