week3作业A-选数问题

题目:
Given n positive numbers, ZJM can select exactly K of them that sums to S. Now ZJM wonders how many ways to get it!

input
The first line, an integer T <= 100, indicates the number of test cases. For each case, there are two lines. The first line, three integers indicate n, K and S. The second line, n integers indicate the positive numbers.

output
For each case, an integer indicate the answer in a independent line.

样例
Input
1
10 3 10
1 2 3 4 5 6 7 8 9 10
Output
4

题目思路:
就是一个带有剪枝的枚举,通过递归,参数为当前选择的数i,点的个数k,和s。对于每一个数i都有选择该数和不选择两种情况,若是选择该数那么k-1,s-value[i]进入下一次递归,若是不选择那么k,s不变。

代码

#include<iostream>
using namespace std;
int count=0;
int n;
int *value;
void solve(int i,int k,int s)
{
   if(k==0&&s==0)
   {
   	count++;//k=0表示数已经选完,s=0表示符合条件,方案数目++
   	return;
   }
   else if(k==0||s<=0||i==n) return;//表示这种选数方案不符合
   solve(i+1,k,s);//选择数i进入下一次i+1的递归
   solve(i+1,k-1,s-value[i]);//不选择数i
}
int main()
{
	int num;
	cin>>num;
	for(int i=0;i<num;i++)
	{
		count=0;
		int k,s;
		cin>>n>>k>>s;
		value=new int[n];
		for(int j=0;j<n;j++)
		cin>>value[j];
		solve(0,k,s);
		cout<<count<<endl;
	}
	return 0;
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参,并将其转换为离散时间系统。对于参考信号,可以择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值