老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
- 每个孩子至少分配到 1 个糖果。
- 相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
输入: [1,0,2]
输出: 5
解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。
示例 2:
输入: [1,2,2]
输出: 4
解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。
第三个孩子只得到 1 颗糖果,这已满足上述两个条件。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/candy
方法 1:暴力
- 最简单的方法是使用一个一维的数组 candies 去记录给学生的糖果数。
- 首先我们给每个学生 1 个糖果。然后我们开始从左到右扫描数组。
- 对每一个学生,如果当前的评分 ratings[i] 比前一名学生的评分 ratings[i - 1] 高,且糖果数小于等于前一名学生 cand ies[i]<=candies[i - 1],那么我们更新 candies[i] = candies[i-1] + 1。
- 同样的,我们检查当前学生的评分 ratings[i] 是否比后一名学生 ratings[i+1] 高,如果成立,我们同样更新 candies[i] = candies[i+1] + 1 。
我们继续对 ratingsratings 数组重复此步骤。 - 如果在某次遍历中, candies 数组不再变化,意味着我们已经得到了最后的糖果分布,此时可以停止遍历。
- 为了记录是否到达最终状态,我们用 flag 记录每次遍历是否有糖果数目变化,如果有,则为 True ,否则为 False 。
public int candy(int[] ratings) {
int[] candies = new int[ratings.length];
Arrays.fill(candies, 1);
boolean flag = true;
int sum = 0;
while (flag) {
flag = false;
for (int i = 0; i < ratings.length; i++) {
if (i != ratings.length - 1 && ratings[i] > ratings[i + 1] && candies[i] <= candies[i + 1]) {
candies[i] = candies[i + 1] + 1;
flag = true;
}
if (i > 0 && ratings[i] > ratings[i - 1] && candies[i] <= candies[i - 1]) {
candies[i] = candies[i - 1] + 1;
flag = true;
}
}
}
for (int candy : candies) {
sum += candy;
}
return sum;
}
方法 2:用两个数组
-
在这种方法中,我们使用两个一维数组 left2right 和 right2left 。
1.1 数组 left2right 用来存储每名学生只与左边邻居有关的所需糖果数。也就是假设规则为:如果一名学生评分比他左边学生高,那么他应该比他左边学生得到更多糖果。
1.2 类似的,right2left 数组用来保存只与右边邻居有关的所需糖果数。也就是假设规则为:如果一名学生评分比他右边学生高,那么他应该比他右边学生得到更多糖果。 -
首先,我们在 left2right 和 right2left 中,给每个学生 1 个糖果。然后,我们从左向右遍历整个数组,只要当前学生评分比他左邻居高,我们在 left2right 数组中更新当前学生的糖果数 left2right[i] = left2right[i-1] + 1 ,这是因为在每次更新前,当前学生的糖果数一定小于等于他左邻居的糖果数。
-
在从左到右扫描后,我们用同样的方法从右到左只要当前学生的评分比他右边学生高,就更新 right2left[i] 为 right2left[i] = right2left[i + 1] + 1 。
-
现在,对于数组中第 ii个学生,为了满足题中条件,我们需要给他max(left2right[i],right2left[i]) 个糖果。
public int candy(int[] ratings) {
int sum = 0;
int[] left2right = new int[ratings.length];
int[] right2left = new int[ratings.length];
Arrays.fill(left2right, 1);
Arrays.fill(right2left, 1);
for (int i = 1; i < ratings.length; i++) {
if (ratings[i] > ratings[i - 1]) {
left2right[i] = left2right[i - 1] + 1;
}
}
for (int i = ratings.length - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1]) {
right2left[i] = right2left[i + 1] + 1;
}
}
for (int i = 0; i < ratings.length; i++) {
sum += Math.max(left2right[i], right2left[i]);
}
return sum;
}
方法 3:使用一个数组
-
在前面的方法中,我们使用了两个数组分别记录每一个学生与他左邻居和右邻居的关系,后来再将两个数组合并。在这里我们可以只用一个数组 candies,记录当前学生被分配的糖果数。
-
首先我们给每个学生 1 个糖果,然后我们从左到右遍历并分配糖果,我们仅更新评分比左邻居高且糖果数小于等于左邻居的学生,将其更新为 candies[i] = candies[i - 1] + 1。
-
从左到右遍历完后,我们同样地从右到左遍历。现在我们需要更新每个学生 i 同时满足左邻居和右邻居的关系。在这次遍历汇总,如果 ratings[i] > ratings[i + 1] ,我们更新为 candies[i] = max(candies[i], candies[i + 1] + 1]) ,这样 candies[i] 同时满足左邻居和右邻居的约束。
public int candy(int[] ratings) {
int[] candies = new int[ratings.length];
Arrays.fill(candies, 1);
for (int i = 1; i < ratings.length; i++) {
if (ratings[i] > ratings[i - 1]) {
candies[i] = candies[i - 1] + 1;
}
}
int sum = candies[ratings.length - 1];
for (int i = ratings.length - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1]) {
candies[i] = Math.max(candies[i], candies[i + 1] + 1);
}
sum += candies[i];
}
return sum;
}