数字摄影测量之特征点提取算法

本文介绍了数字摄影测量中的特征点提取,详细解析了Moravec算子和Harris角点检测算法。从基本概念如特征点的确定性和不变性到图像导数,再到Harris算子的数学表达和角点响应函数,阐述了如何定量判断角点。内容涵盖特征点提取的原理和应用,对图像处理和计算机视觉有一定基础的读者有益。
摘要由CSDN通过智能技术生成

1 一些基本概念与

什么是特征点?

点特征:影像曲面上具有特殊性质的点或者亮度特别明显的小区域,边缘的交点及区域或轮廓的角点
角点类型
提取点特征的算子称为兴趣算子

特征点条件(具有什么性质才被称为特征点?)

1.确定性:好的兴趣点与背景是有明显区别的,局部邻域中是唯一的
2.不变性
3.稳定性
4.稀缺性
5.可理解性
6.高效性

什么是数字影像(图像)的导数

高数中导数的几何意义:表示函数曲线在某点处切线的斜率
在这里插入图片描述
图像的一阶导数:对X求偏导就相当于对某点处行的下一个像素减去当前像素值
对y求偏导类似在这里插入图片描述
图像二阶导数
在这里插入图片描述在这里插入图片描述在这里插入图片描述

2.特征点提取算法之——Moravec算子

1.计算各像元兴趣值IV
计算四个方向上的 兴趣值大小
首先计算各像素的兴趣值。在以像素&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值