数字摄影测量之线特征提取算子——有差分算子、拉普拉斯算子、LOG算子

什么是图像的线特征

影像的边缘或线认为是图像的线特征;
“边缘”可定义为影像局部区域特征不相同的那些区域间的 分界线,
而“线”则可以认为是具有很小宽度的其中间区域 具有相同的影像特征的边缘对

线特征提取的应用

1.房屋提取
2.道路提取

什么是梯度算子(也叫一阶差分算子)

g(x,y)为图像某点处的灰度值;梯度算子即为对x,y方向求偏导数(如何对数字影像求导数请参见该文章前些部分的介绍影像的导数
在这里插入图片描述

如何利用算子进行边缘提取(通过卷积,什么是卷积?)

以sobel算子为例学习一下如何进行卷积

以后有时间再写QAQ;

三种一阶差分算子

1. Roberts算子

在这里插入图片描述

2.Sobel算子

在这里插入图片描述

3.Prewitt算子

与Sobel算子模板类似
在这里插入图片描述

二阶差分算子

在这里插入图片描述
在这里插入图片描述

1.拉普拉斯算子(Laplace)

2.高斯-拉普拉斯算子(LOG)

3.Canny算子

算子比较

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值