【win10+RAGFlow+Ollama】搭建本地大模型助手(教程+源码)

一、RAGFlow简介

RAGFlow是一个基于对文档深入理解的开源RAG(Retrieval-augmented Generation,检索增强生成)引擎。

系统架构
主要作用: 让用户创建自有知识库,根据设定的参数对知识库中的文件进行切块处理,用户向大模型提问时,RAGFlow先查找自有知识库中的切块内容,接着把查找到的知识库数据输入到对话大模型中再生成内容输出。

平台特点: 支持丰富的文件类型,如Word、PPT、excel表格、csv/txt、图片、PDF、结构化数据、网页等 。

平台Demo链接: https://demo.ragflow.io.

二、win10 系统本地化部署 RAGFlow 平台

2.1 部署思路

1、通过win10系统自带的wsl构建linux虚拟环境;
2、通过docker desktop实现docker环境部署
3、通过ollama实现大模型底座下载管理;
4、将ragflow平台下载到本地linux环境进行运行部署,使用ollama中的大模型能力;
5、自己构建业务数据训练本地大模型;
6、测试训练结果。

2.2 环境要求

CPU >= 4 cores
RAM >= 16 GB
Disk >= 50 GB
Docker >= 24.0.0 & Docker Compose >= v2.26.1

2.3 前置条件(win10 环境设置)

可通过代码或者自己配置实现环境设置。
(1)代码修改

// 启用适用于 Linux 的 Windows 子系统
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

//检查运行 WSL 2 的要求
//若要更新到 WSL 2,需要运行 Windows 10。
// 对于 x64 系统:版本 1903 或更高版本,采用 内部版本 18362 或更高版本。
// 对于 ARM64 系统:版本 2004
// 或更高版本,采用 内部版本 19041 或更高版本。
// 低于 18362 的版本不支持 WSL 2。使用 Windows U
### 在 Windows Server 2016 上本地部署 RAGFlow #### 获取源码 为了在 Windows Server 2016 上部署 RAGFlow,需先获取项目源代码。通过 Git 命令克隆仓库到本地环境: ```bash git clone https://github.com/infiniflow/ragflow.git ``` 此命令会下载整个 RagFlow 项目的最新版本至当前目录下[^1]。 #### 启动应用程序 完成源码拉取之后,进入 `api` 文件夹内分别执行两个 Python 脚本文件来启动核心服务组件: - task_executor.py - ragflow_server.py 另外,在前端部分还需要运行 npm 开发模式指令以启动 Web 应用程序界面: ```bash cd path\to\project\frontend npm install npm run dev ``` 上述操作能够使 API 和前端应用正常工作并监听指定端口等待客户端请求到来[^2]. #### 使用 Docker 容器化部署 (推荐方式) 对于生产环境中更稳定可靠的方案,则建议采用官方提供的Docker镜像来进行安装配置。确保所有必要的容器都在健康运转之中, 包括但不限于以下几个关键的服务实例: - **ragflow-server**: 主要负责处理业务逻辑以及对外提供 RESTful 接口访问. - **ragflow-redis**: 缓存层用于提高数据读写效率减少数据库压力. - **ragflow-mysql**: 关系型数据库管理系统存储结构化的持久化信息. - **ragflow-minio**: 对象存储解决方案实现非结构化资源管理功能. - **ragflow-es-01**: Elasticsearch 实例支持全文检索能力. 可以利用如下命令查看各服务的日志输出情况以便于调试排查可能存在的问题: ```bash docker logs container_name_or_id ``` 例如针对主节点可输入 `docker logs ragflow-server` 来获得其最近一段时间内的活动记录[^3]. 考虑到不同操作系统之间可能存在细微差别,尽管本文档侧重描述 Linux 平台上的实践步骤,但在大多数情况下这些指导原则同样适用于 Windows Server 2016 的场景当中[^4].
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值