一、RAGFlow简介
RAGFlow是一个基于对文档深入理解的开源RAG(Retrieval-augmented Generation,检索增强生成)引擎。
主要作用: 让用户创建自有知识库,根据设定的参数对知识库中的文件进行切块处理,用户向大模型提问时,RAGFlow先查找自有知识库中的切块内容,接着把查找到的知识库数据输入到对话大模型中再生成内容输出。
平台特点: 支持丰富的文件类型,如Word、PPT、excel表格、csv/txt、图片、PDF、结构化数据、网页等 。
平台Demo链接: https://demo.ragflow.io.
二、win10 系统本地化部署 RAGFlow 平台
2.1 部署思路
1、通过win10系统自带的wsl构建linux虚拟环境;
2、通过docker desktop实现docker环境部署
3、通过ollama实现大模型底座下载管理;
4、将ragflow平台下载到本地linux环境进行运行部署,使用ollama中的大模型能力;
5、自己构建业务数据训练本地大模型;
6、测试训练结果。
2.2 环境要求
CPU >= 4 cores
RAM >= 16 GB
Disk >= 50 GB
Docker >= 24.0.0 & Docker Compose >= v2.26.1
2.3 前置条件(win10 环境设置)
可通过代码或者自己配置实现环境设置。
(1)代码修改
// 启用适用于 Linux 的 Windows 子系统
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
//检查运行 WSL 2 的要求
//若要更新到 WSL 2,需要运行 Windows 10。
// 对于 x64 系统:版本 1903 或更高版本,采用 内部版本 18362 或更高版本。
// 对于 ARM64 系统:版本 2004
// 或更高版本,采用 内部版本 19041 或更高版本。
// 低于 18362 的版本不支持 WSL 2。使用 Windows U