一、概念辨析
1.全局路径规划:在地图已知的情况下,利用已知的局部信息(eg.障碍物位置、道路边界),确定最优的路径。
局部路径规划:当环境突然变化(如出现未知障碍),根据传感器获得的局部环境信息实时生成路径,用于动态规划。
2.路径跟踪:通过控制车辆的运动,减少车辆与参考路径之间的空间上的误差(不受时间约束)。
轨迹跟踪:同时考虑空间和时间约束。(①局部规划时必考虑了时间信息;②考虑车辆的纵向和横向动力学约束的路径规划,是轨迹规划)
3.模型约束
运动学约束:车辆低速行驶时,运动学约束影响较大
动力学约束:车速增加后,必须考虑动力学约束
4.轨迹规划:计算出满足车辆动力学和运动学约束的无碰撞运动轨迹
轨迹跟踪:在跟踪阶段生成满足非线性动力学约束和执行机构极限约束的控制量,在规定时间内到达某一预先设定好的参考路径点
5.非完整动力学约束:车辆在运动过程中没有滑移纯跟踪算法(Pure Pursuit)
6.纵向动力学:纵向是车辆前进方向,主要研究内容是汽车的加速与制动、
横向动力学:即车辆侧向,主要与车辆的转弯性能有关,另一个方面是车辆行驶中的抗侧向力(如大桥上横风)能力,多用于讨论车辆的稳定性
二、模型预测控制框图
1.模型预测控制的3个关键步骤:
①模型预测:根据对象的历史信息和未来输入,预测系统未来的输出。常见的预测模型有:状态方程、传递函数、阶跃响应、脉冲响应等。
②滚动优化:通过某一性能指标的最优来确定控制作用,反复在线进行求最优解。
③反馈校正:在新的采样时刻,首先检测对象的实际输出,并利用这一实时信息对基于模型的预测结果进行修正,然后再进行新的优化。
2.模型结构框图
①MPC控制器:
输入:状态的估计量x_hat(t)
输出:结合预测模型、目标函数和约束条件进行最优化求解,得到当前时刻的最优控制序列u*(t)
②被控平台:
按照当前控制量u*(t)进行控制,得到当前的状态观测值x(t)
③状态估计器:
对于那些无法通过传感器观测得到或者观测成本过高的状态量进行估计。
常用的方法有:Kalman滤波、粒子滤波等。
3.MPC模型预测控制的数学模型可见另一篇文章:MPC模型预测控制及在Matlab中实现函数定义_锅小白的博客-CSDN博客_matlab mpc