电磁场与波初步学习 总结(一)

矢量分析基础

场的概念
在每一时刻,某物理量在区域内的每一点都有确定的值,则此空间中确立了该物理量的场。
若该物理量为标量,则其为标量场。
若该物理量为矢量,则其为矢量场。

三重积公式
标量三重积:
A ⋅ ( B × C ) = B ⋅ ( C × A ) = C ⋅ ( A × B ) A\cdot (B \times C)=B\cdot (C \times A)=C\cdot (A \times B) A(B×C)=B(C×A)=C(A×B)
矢量三重积:
A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B ) A\times(B \times C)=B(A \cdot C)-C (A \cdot B) A×(B×C)=B(AC)C(AB)

梯度
对象:标量场
得到:矢量场
意义:以矢量的方向和矢量的模分别描述各点下降最快的方向,以及最快是多少。
计算公式:
g r a d   u = ▽ u = e x ∂ u ∂ x + e y ∂ u ∂ y + e z ∂ u ∂ z grad \: u=\triangledown u=\boldsymbol {e_{x}}\frac{\partial u}{\partial x}+\boldsymbol e_{y}\frac{\partial u}{\partial y}+\boldsymbol e_{z}\frac{\partial u}{\partial z} gradu=u=exxu+eyyu+ezzu

散度
对象:矢量场
得到:标量场
意义:其本质为通量的微元,但是微元不好表示,于是利用了与通量微元同步减少的体积微元,使其比值为一容易表示的数,即散度。所以其表征的是从该点流出的矢量线的多少。
而我们知道磁场线无头无尾,只可能从某点经过,而不可能从某点发出或终止,所以磁场没有散度,其为无散场。
反观电场线,其由无穷远点处或正负电荷处发出,所以在某一点处若放置一个点电荷则有净电场线流入或流出,则其通量可能不为零,故其可能有有散度,我们称点电荷为散度源。
计算公式:
▽ ⋅ F = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z \triangledown \cdot \boldsymbol{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z} F=xFx+yFy+zFz

旋度
对象:矢量场
得到:矢量场
意义:其本质为环流,即封闭曲线的线积分。利用与散度同样的思想,借助于环流微元同步减小的面积微元,使这两者的比值表现为一简单的数,即旋度。
由于线积分有顺时针积分和逆时针积分的区别,所以旋度是有方向的,所以其一个矢量。
由于静电场为保守场,即其积分与路径无关,所以对于闭合的环路积分为零,所以其旋度自然为零。
而磁场沿闭合曲线的积分并不为零,所以其为有旋场。
计算公式:
▽ × F = ∣ e x e y e z ∂ ∂ x ∂ ∂ y ∂ ∂ z   F x F y F z ∣ \bigtriangledown \times \boldsymbol{\mathbf{F}} = \begin{vmatrix} \mathbf{e_{x}}& \mathbf{e_{y}}& \mathbf{e_{z}}\\ \frac{\partial }{\partial x}& \frac{\partial }{\partial y}& \frac{\partial }{\partial z} \\ \ F_{x}& F_{y}& F_{z} \\ \end{vmatrix} ×F=exx FxeyyFyezzFz

高斯定理与斯托克斯定理
这两个公式实际上是对散度和旋度定义的还原。
如上所述:
散度等于微元的通量/微元体积,那么对体积微元进行积分则得到通量。这就是高斯定理。
旋度等于微元的环流/面积微元,那么其对面积进行积分则得到环流。这就是斯托克斯公式。

无旋场可以被认为是梯度场
由恒等式:
▽ × ( ▽ u ) ≡ 0 \bigtriangledown \times (\bigtriangledown u)\equiv 0 ×(u)0
即梯度的旋度为零,这从旋度的定义来看也非常好理解,旋度即是微元环流,而梯度的环流一定为0,所以该等式成立。

无散场可以被认为是旋度场
由恒等式:
▽ ⋅ ( ▽ × A ) ≡ 0 \bigtriangledown \cdot (\bigtriangledown \times \mathbf{A})\equiv 0 (×A)0
即旋度的散度为零,这从散度的定义来说也很好理解,环流是对曲线的积分,而对于闭合曲面,并不存在边界曲线,故其散度为0。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值