device = next(self.parameters()).device

释义:

该句代码的意思是指定 和参数相同的设备。

具体解释:

首先,需要理解 next() 函数

它用于返回迭代器的下一个项目

在这里的

device = next(self.parameters()).device

 next(self.parameters()) 用于返回第一个参数

整句代码就是指定 使用和参数相同的设备

参考示例:

    def parse_data_batch(self, batch):
        """Parse data batch to form inputs and targets for model training/evaluating
        """
        # use same device as parameters
        device = next(self.parameters()).device
        print(next(self.parameters()))
        print(next(self.parameters()).device)

        text, text_length, mel, stop, mel_length = batch
        text = text.to(device).long()
        text_length = text_length.to(device).long()
        mel = mel.to(device).float()
        stop = stop.to(device).float()

        return (text, text_length, mel), (mel, stop)

 

'''Next, define the trainer and the parameters used for training.''' class Trainer: def __init__(self,model,train_loader,val_loader=None,loss_function=l2loss,device=torch.device('cpu'), optimizer='Adam_amsgrad',lr=5e-4,weight_decay=0): self.opt_type=optimizer self.device=device self.model=model self.train_data=train_loader self.val_data=val_loader self.device=device self.opts={'AdamW':torch.optim.AdamW(self.model.parameters(),lr=lr,amsgrad=False,weight_decay=weight_decay), 'AdamW_amsgrad':torch.optim.AdamW(self.model.parameters(),lr=lr,amsgrad=True,weight_decay=weight_decay), 'Adam':torch.optim.Adam(self.model.parameters(),lr=lr,amsgrad=False,weight_decay=weight_decay), 'Adam_amsgrad':torch.optim.Adam(self.model.parameters(),lr=lr,amsgrad=True,weight_decay=weight_decay), 'Adadelta':torch.optim.Adadelta(self.model.parameters(),lr=lr,weight_decay=weight_decay), 'RMSprop':torch.optim.RMSprop(self.model.parameters(),lr=lr,weight_decay=weight_decay), 'SGD':torch.optim.SGD(self.model.parameters(),lr=lr,weight_decay=weight_decay) } self.optimizer=self.opts[self.opt_type] self.loss_function=loss_function self.step=-1 def train(self,num_train,targ,stop_loss=1e-8, val_per_train=50, print_per_epoch=10): self.model.train() len_train=len(self.train_data) for i in range(num_train): val_datas=iter(self.val_data) for j,batch in enumerate(self.train_data): self.step=self.step+1 torch.cuda.empty_cache() self.optimizer.zero_grad() out = self.model(pos=batch.pos.to(self.device), z=batch.z.to(self.device), batch=batch.batch.to(self.device)) target = batch[targ].to(self.device) 这个是源代码的一部分,请帮我修改完整后发给我
最新发布
03-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值