CNN/RNN学习笔记
祎小祎
1. 人工神经网络
神经网络的每个神经元如下
基本wx + b的形式,其中
x1 x2表示输入向量
w为权重,几个输入则意味着有几个权重,即每个输入都被赋予一个权重
b为偏置bias
g(z) 为激活函数
a 为输出
1.1 CNN网络的层级结构
输入层,卷积层,激活层,池化层,全连接FC层。
输入层:对数据做预处理,常见处理方:(1)去均值 (2)归一化 (3)降维
卷积层:人的大脑识别图片的过程中,并不是一下子整张图同时识别,而是对于图片中的每一个特征首先局部感知,然后更高层次对局部进行综合操作,从而得到全局信息。
卷积层使用“卷积核”进行局部感知。举个例子来讲,一个32×32×3的RGB图经过一层5×5×3的卷积后变成了一个28×28×1的特征图,那么输入层共有32×32×3=3072个神经元,第一层隐层会有28×28=784个神经元,这784个神经元对原输入层的神经元只是局部连接。
激励层:对卷积层结果做一次非线性映射。
如果不用激励函数(其实就相当于激励函数是f(x)=x),这种情况下,每一层的输出都是上一层输入的线性函数。容易得出,无论有多少神经网络层,输出都是输入的线性组合,与没有隐层的效果是一样的,这就是最原始的感知机了。
- 使用ReLu时,应调小learning rate,防止出现很多梯度为零的神经元
- 如果不能解决learning rate的问题,就使用Leaky ReLu、PReLu来替代
- 不建议使用sigmoid函数,用tanh替代
池化层:主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。主要有以下两种方式
- Max Pooling:最大池化
- Average Pooling:平均池化
下图展示了一个含有多个卷积层+激励层+池化层的过程:
2.代码
- python 基于keras实现CNN代码 (已经实操可以直接用)
- Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。
import numpy as np
#seed( ) 用于指定随机数生成时所用算法开始的整数值。
np.random.seed(1337)
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
#选取样本数
batch_size = 128
nb_classes = 10
epochs = 5
# input image dimensions
img_rows, img_cols = 28, 28
# 卷积滤波器的数量
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size 设置卷积核大小
kernel_size = (3, 3)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
from sklearn.model_selection import train_test_split
#x为数据集的feature熟悉,y为label.
X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size = 0.2)
# 根据不同的backend定下不同的格式
if K.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
X_valid = X_valid.reshape(X_valid.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols