- 博客(16)
- 资源 (1)
- 收藏
- 关注
原创 【附源码】A Text Attention Network forSpatial Deformation Robust Scene Text Image Super-resolution(TATT)
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution
2022-10-08 16:14:01 2396 1
原创 【图像盲超】Deep Constrained Least Squares for Blind Image Super-Resolution 基于深度约束最小二乘的盲图像超分辨率算法
本文提出了一种改进的退化模型和两个新的模型来解决盲图像超分辨率问题。该方法继承了盲随机共振的一般方法,改进了核估计方法和基于核的高分辨率图像恢复方法。更具体地说,我们首先重新表述退化模型,以便将去模糊核估计转移到低分辨率空间。在此基础上,引入了动态深线性滤波模块。它不需要为所有图像学习一个固定的核,而是可以根据输入自适应地生成去模糊核权值,并产生更稳健的核估计。然后,在重构核和估计核的基础上,应用深度约束最小二乘滤波模块生成干净的特征。然后,将去模糊特征和低输入图像特征馈入双路径结构化SR网络,并恢复最终的
2022-03-30 15:06:11 6071
原创 【做图工具】MulimgViewer 论文图像处理神器
Layout部分Row代表行数,,NumperImg代表列数 Vertical控制放大图片垂直展示 OneImg,可以控制几张图像合成一张图像,Crtl+r刷新。 ShowImg表示显示原图,show+放大镜表示显示放大图 通过Gap的第三个参数可以调整横向图中间的空白间隙,第四个参数可以调整上下图之间的间隙BOX部分Inimg表示小红框在图内显示, in表示放大的图的框是红色的, right bottom表示右下角,其余类似, width表示框的粗细 选中select...
2022-03-25 10:13:56 2163
原创 【图像盲超】Learning the Degradation Distribution for Blind Image Super-Resolution(CVPR2022)学习盲图像超分辨率的退化分布
DAN的原作者,中科院自动化所的团队。文章中心思想:通过建模一个随机退化模型,让HR随机退化到LR图像。LR图像与测试的real图像做GAN来区分是否是一个域的分布(对抗损失),如果不是,则返回重新生成LR图像,如果是,则进入SR model去生成SR图像(L1损失)。一句话:通过学习怎么生成真实图像的分布,合成大量的符合真实图像分布的训练样本。从而在测试真实图像时能够有很好的效果。之前大多数基于退化学习的 SR 方法都有一个共同的缺点:它们的退化模型是确定性的,每张 HR 图像只能退化为某个
2022-03-16 22:21:33 4586 4
转载 【可视化工具】t-SNE Pytorch(可视化两个图片数据集合的差异)
import osimport numpy as npimport cv2from time import timeimport numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dfrom sklearn import datasets #手写数据集要用到from sklearn.manifold import TSNE#该函数是关键,需要根据自己的数据加以修改,将图片存到一个.
2022-03-05 21:51:10 5403 1
原创 盲超分中的核估计实现有关函数
以MANet代码为例class MANet_s1(nn.Module): ''' stage1, train MANet''' def __init__(self, in_nc=3, out_nc=3, nf=64, nb=10, gc=32, scale=4, pca_path='./pca_matrix_aniso21_15_x2.pth', code_length=15, kernel_size=21, manet_nf=256, manet_
2022-03-01 21:41:13 2396
原创 一些有用的basicblock
from collections import OrderedDictimport torchimport torch.nn as nnimport torch.nn.functional as F'''# ===================================# Advanced nn.Sequential# reform nn.Sequentials and nn.Modules# to a single nn.Sequential# ===============.
2022-03-01 11:44:27 2744
原创 大核注意力Large Kernel Attention(LKA)
这种分解方式也被叫做大核注意力(Large Kernel Attention),即LKA。如上图所示,一个很大kernel size的卷积被分解成一个Depth-wise卷积+一个Depth-wise空洞卷积+一个1× \times× 1卷积。这样,就可以大大减少FLOPs和参数量。很有效地解决了小核卷积的local性。class AttentionModule(nn.Module): def __init__(self, dim): super().__init__()...
2022-03-01 11:01:05 6876 5
原创 torch.roll图片实验
torch.roll(input, shifts, dims=None) → Tensorinput为输入张量,shifts表示要滚动的方向。负数表示左上,正数表示右下。dims表示要滚动的维度。比如,我要把一张图片从左边变换到右边:torch.roll(img, (-120, -120))、可以看到猫的图像整体往左上移动了120个单位,而移动的部分会在移动方向相反的地方补足。代码示例如下import torchimport numpy as npimport cv2impo.
2022-03-01 09:02:47 403
原创 pytorch中nn.Dropout的使用技巧
x = torch.randn(20, 16)dropout = nn.Dropout(p=0.2)x_drop = dropout(x)那么,这个操作表示使x每个位置的元素都有一定概率归0,以此来模拟现实生活中的某些频道的数据缺失,以达到数据增强的目的。每个频道的数据缺失相互独立,以服从伯努利分布的概率值p来进行随机变为0。也就是说在一张完整特征图中,随机失活一些像素点,以生成残次的特征图,这就是“模拟现实生活中的某些频道的数据缺失”。一句话说明:一个筛子提取特征成为一张纸,一张纸dr.
2022-02-28 22:37:27 879
原创 神经网络训练tricks
1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。比如何凯明发现暗通道去雾算法。一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。2、设置端到端的训练评估框架下一步是建立一个完整的训练+评估框架。这个阶段的技巧有:· 固定随机种子使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。· 过拟合
2022-02-28 19:52:54 2516
原创 imgaug
数据增广库。pip3 install git+https://github.com/aleju/imgaug #从github安装pip3 install Augmentor –user #pip直接安装该数据增强库也非常容易上手,加入我们已经读取了二维的图像数据,记为images,images应该有四个维度,分别为(N,height,weidth,channels)就是图像数量,图像高度,图像宽度,图像的通道(RGB)。如果是灰度图的话,也必须为四个维度,其中channels为1。数据必..
2022-02-28 17:26:24 150
转载 cProfile——python性能分析
写代码经常会听说一些名词,比如 性能分析、代码调优。cProfile 是 python 代码调优的一种工具,它能够统计在整个代码执行过程中,每个函数调用的次数和消耗的时间。这个工具虽然很常用,但是没必要花太多时间研究这个工具,简单使用就能达到效果,所以我这里只简单记录下核心用法。两种使用方式cProfile.run('func(arg)') # 调优函数,在脚本中使用python -m cProfile myscript.py (-s ziduan) # 调优脚本,
2022-02-28 16:33:55 2130 1
转载 对于训练中多个loss的权重问题的解决方案
作者:hzwer链接:https://www.zhihu.com/question/375794498/answer/2292320194来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。这也是个困扰了我多年的问题:loss = a * loss1 + b * loss2 + c * loss3 怎么设置 a,b,c?我的经验是 loss 的尺度一般不太影响性能,除非本来主 loss 是 loss1,但是因为 b,c 设置太大了导致其他 loss 变成了主 .
2022-02-28 15:43:59 9659 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人