一些有用的basicblock

from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F

'''
# ===================================
# Advanced nn.Sequential
# reform nn.Sequentials and nn.Modules
# to a single nn.Sequential
# ===================================
'''


def sequential(*args):
    if len(args) == 1:
        if isinstance(args[0], OrderedDict):
            raise NotImplementedError('sequential does not support OrderedDict input.')
        return args[0]  # No sequential is needed.
    modules = []
    for module in args:
        if isinstance(module, nn.Sequential):
            for submodule in module.children():
                modules.append(submodule)
        elif isinstance(module, nn.Module):
            modules.append(module)
    return nn.Sequential(*modules)


'''
# ===================================
# Useful blocks
# --------------------------------
# conv (+ normaliation + relu)
# concat
# sum
# resblock (ResBlock)
# resdenseblock (ResidualDenseBlock_5C)
# resinresdenseblock (RRDB)
# ===================================
'''


# -------------------------------------------------------
# return nn.Sequantial of (Conv + BN + ReLU)
# -------------------------------------------------------
def conv(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CBR'):
    L = []
    for t in mode:
        if t == 'C':
            L.append(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
        elif t == 'T':
            L.append(nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
        elif t == 'B':
            L.append(nn.BatchNorm2d(out_channels, momentum=0.9, eps=1e-04, affine=True))
        elif t == 'I':
            L.append(nn.InstanceNorm2d(out_channels, affine=True))
        elif t == 'R':
            L.append(nn.ReLU(inplace=True))
        elif t == 'r':
            L.append(nn.ReLU(inplace=False))
        elif t == 'L':
            L.append(nn.LeakyReLU(negative_slope=1e-1, inplace=True))
        elif t == 'l':
            L.append(nn.LeakyReLU(negative_slope=1e-1, inplace=False))
        elif t == '2':
            L.append(nn.PixelShuffle(upscale_factor=2))
        elif t == '3':
            L.append(nn.PixelShuffle(upscale_factor=3))
        elif t == '4':
            L.append(nn.PixelShuffle(upscale_factor=4))
        elif t == 'U':
            L.append(nn.Upsample(scale_factor=2, mode='nearest'))
        elif t == 'u':
            L.append(nn.Upsample(scale_factor=3, mode='nearest'))
        elif t == 'M':
            L.append(nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=0))
        elif t == 'A':
            L.append(nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))
        else:
            raise NotImplementedError('Undefined type: '.format(t))
    return sequential(*L)


class ConditionalBatchNorm2d(nn.Module):
    def __init__(self, num_features, num_classes):
        super().__init__()
        self.num_features = num_features
        self.bn = nn.BatchNorm2d(num_features, affine=False)
        self.embed = nn.Embedding(num_classes, num_features * 2)
        self.embed.weight.data[:, :num_features].normal_(1, 0.02)  # Initialise scale at N(1, 0.02)
        self.embed.weight.data[:, num_features:].zero_()  # Initialise bias at 0

    def forward(self, x, y):
        out = self.bn(x)
        gamma, beta = self.embed(y).chunk(2, 1)
        out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
        return out


'''
FFT block
'''

class FFTBlock(nn.Module):
    def __init__(self, channel=64):
        super(FFTBlock, self).__init__()
        self.conv_fc = nn.Sequential(
                nn.Conv2d(1, channel, 1, padding=0, bias=True),
                nn.ReLU(inplace=True),
                nn.Conv2d(channel, 1, 1, padding=0, bias=True),
                nn.Softplus()
        )

    def forward(self, x, u, d, sigma):
        rho = self.conv_fc(sigma)
        x = torch.irfft(self.divcomplex(u + rho.unsqueeze(-1)*torch.rfft(x, 2, onesided=False), d + self.real2complex(rho)), 2, onesided=False)
        return x

    def divcomplex(self, x, y):
        a = x[..., 0]
        b = x[..., 1]
        c = y[..., 0]
        d = y[..., 1]
        cd2 = c**2 + d**2
        return torch.stack([(a*c+b*d)/cd2, (b*c-a*d)/cd2], -1)

    def real2complex(self, x):
        return torch.stack([x, torch.zeros(x.shape).type_as(x)], -1)




# -------------------------------------------------------
# Concat the output of a submodule to its input
# -------------------------------------------------------
class ConcatBlock(nn.Module):
    def __init__(self, submodule):
        super(ConcatBlock, self).__init__()

        self.sub = submodule

    def forward(self, x):
        output = torch.cat((x, self.sub(x)), dim=1)
        return output

    def __repr__(self):
        return self.sub.__repr__() + 'concat'


# -------------------------------------------------------
# Elementwise sum the output of a submodule to its input
# -------------------------------------------------------
class ShortcutBlock(nn.Module):
    def __init__(self, submodule):
        super(ShortcutBlock, self).__init__()

        self.sub = submodule

    def forward(self, x):
        output = x + self.sub(x)
        return output

    def __repr__(self):
        tmpstr = 'Identity + \n|'
        modstr = self.sub.__repr__().replace('\n', '\n|')
        tmpstr = tmpstr + modstr
        return tmpstr


# -------------------------------------------------------
# Res Block: x + conv(relu(conv(x)))
# -------------------------------------------------------
class ResBlock(nn.Module):
    def __init__(self, in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CRC'):
        super(ResBlock, self).__init__()

        assert in_channels == out_channels, 'Only support in_channels==out_channels.'
        if mode[0] in ['R','L']:
            mode = mode[0].lower() + mode[1:]

        self.res = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode)

    def forward(self, x):
        res = self.res(x)
        return x + res


# -------------------------------------------------------
# Channel Attention (CA) Layer
# -------------------------------------------------------
class CALayer(nn.Module):
    def __init__(self, channel=64, reduction=16):
        super(CALayer, self).__init__()

        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv_fc = nn.Sequential(
                nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
                nn.ReLU(inplace=True),
                nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
                nn.Sigmoid()
        )

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv_fc(y)
        return x * y


# -------------------------------------------------------
# Residual Channel Attention Block (RCAB)
# -------------------------------------------------------
class RCABlock(nn.Module):
    def __init__(self, in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CRC', reduction=16):
        super(RCABlock, self).__init__()
        assert in_channels == out_channels, 'Only support in_channels==out_channels.'
        if mode[0] in ['R','L']:
            mode = mode[0].lower() + mode[1:]

        self.res = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode)
        self.ca = CALayer(out_channels, reduction)

    def forward(self, x):
        res = self.res(x)
        res = self.ca(res)
        return res + x


# -------------------------------------------------------
# Residual Channel Attention Group (RG)
# -------------------------------------------------------
class RCAGroup(nn.Module):
    def __init__(self, in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CRC', reduction=16, nb=12):
        super(RCAGroup, self).__init__()
        assert in_channels == out_channels, 'Only support in_channels==out_channels.'
        if mode[0] in ['R','L']:
            mode = mode[0].lower() + mode[1:]

        RG = [RCABlock(in_channels, out_channels, kernel_size, stride, padding, bias, mode, reduction)  for _ in range(nb)]
        RG.append(conv(out_channels, out_channels, mode='C'))
        self.rg = nn.Sequential(*RG)  # self.rg = ShortcutBlock(nn.Sequential(*RG))

    def forward(self, x):
        res = self.rg(x)
        return res + x


# -------------------------------------------------------
# Residual Dense Block
# style: 5 convs
# -------------------------------------------------------
class ResidualDenseBlock_5C(nn.Module):
    def __init__(self, nc=64, gc=32, kernel_size=3, stride=1, padding=1, bias=True, mode='CR'):
        super(ResidualDenseBlock_5C, self).__init__()

        # gc: growth channel
        self.conv1 = conv(nc, gc, kernel_size, stride, padding, bias, mode)
        self.conv2 = conv(nc+gc, gc, kernel_size, stride, padding, bias, mode)
        self.conv3 = conv(nc+2*gc, gc, kernel_size, stride, padding, bias, mode)
        self.conv4 = conv(nc+3*gc, gc, kernel_size, stride, padding, bias, mode)
        self.conv5 = conv(nc+4*gc, nc, kernel_size, stride, padding, bias, mode[:-1])

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(torch.cat((x, x1), 1))
        x3 = self.conv3(torch.cat((x, x1, x2), 1))
        x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        return x5.mul_(0.2) + x


# -------------------------------------------------------
# Residual in Residual Dense Block
# 3x5c
# -------------------------------------------------------
class RRDB(nn.Module):
    def __init__(self, nc=64, gc=32, kernel_size=3, stride=1, padding=1, bias=True, mode='CR'):
        super(RRDB, self).__init__()

        self.RDB1 = ResidualDenseBlock_5C(nc, gc, kernel_size, stride, padding, bias, mode)
        self.RDB2 = ResidualDenseBlock_5C(nc, gc, kernel_size, stride, padding, bias, mode)
        self.RDB3 = ResidualDenseBlock_5C(nc, gc, kernel_size, stride, padding, bias, mode)

    def forward(self, x):
        out = self.RDB1(x)
        out = self.RDB2(out)
        out = self.RDB3(out)
        return out.mul_(0.2) + x


'''
# ======================
# Upsampler
# ======================
'''


# -------------------------------------------------------
# conv + subp + relu
# -------------------------------------------------------
def upsample_pixelshuffle(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1, bias=True, mode='2R'):
    assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
    up1 = conv(in_channels, out_channels * (int(mode[0]) ** 2), kernel_size, stride, padding, bias, mode='C'+mode)
    return up1


# -------------------------------------------------------
# nearest_upsample + conv + relu
# -------------------------------------------------------
def upsample_upconv(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1, bias=True, mode='2R'):
    assert len(mode)<4 and mode[0] in ['2', '3'], 'mode examples: 2, 2R, 2BR, 3, ..., 3BR.'
    if mode[0] == '2':
        uc = 'UC'
    elif mode[0] == '3':
        uc = 'uC'
    mode = mode.replace(mode[0], uc)
    up1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode)
    return up1


# -------------------------------------------------------
# convTranspose + relu
# -------------------------------------------------------
def upsample_convtranspose(in_channels=64, out_channels=3, kernel_size=2, stride=2, padding=0, bias=True, mode='2R'):
    assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
    kernel_size = int(mode[0])
    stride = int(mode[0])
    mode = mode.replace(mode[0], 'T')
    up1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode)
    return up1


'''
# ======================
# Downsampler
# ======================
'''


# -------------------------------------------------------
# strideconv + relu
# -------------------------------------------------------
def downsample_strideconv(in_channels=64, out_channels=64, kernel_size=2, stride=2, padding=0, bias=True, mode='2R'):
    assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
    kernel_size = int(mode[0])
    stride = int(mode[0])
    mode = mode.replace(mode[0], 'C')
    down1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode)
    return down1


# -------------------------------------------------------
# maxpooling + conv + relu
# -------------------------------------------------------
def downsample_maxpool(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=0, bias=True, mode='2R'):
    assert len(mode)<4 and mode[0] in ['2', '3'], 'mode examples: 2, 2R, 2BR, 3, ..., 3BR.'
    kernel_size_pool = int(mode[0])
    stride_pool = int(mode[0])
    mode = mode.replace(mode[0], 'MC')
    pool = conv(kernel_size=kernel_size_pool, stride=stride_pool, mode=mode[0])
    pool_tail = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode[1:])
    return sequential(pool, pool_tail)


# -------------------------------------------------------
# averagepooling + conv + relu
# -------------------------------------------------------
def downsample_avgpool(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='2R'):
    assert len(mode)<4 and mode[0] in ['2', '3'], 'mode examples: 2, 2R, 2BR, 3, ..., 3BR.'
    kernel_size_pool = int(mode[0])
    stride_pool = int(mode[0])
    mode = mode.replace(mode[0], 'AC')
    pool = conv(kernel_size=kernel_size_pool, stride=stride_pool, mode=mode[0])
    pool_tail = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode[1:])
    return sequential(pool, pool_tail)


'''
# ======================
# NonLocalBlock2D: 
# embedded_gaussian
# +W(softmax(thetaXphi)Xg)
# ======================
'''


# -------------------------------------------------------
# embedded_gaussian
# -------------------------------------------------------
class NonLocalBlock2D(nn.Module):
    def __init__(self, nc=64, kernel_size=1, stride=1, padding=0, bias=True, act_mode='B', downsample=False, downsample_mode='maxpool'):

        super(NonLocalBlock2D, self).__init__()

        inter_nc = nc // 2
        self.inter_nc = inter_nc
        self.W = conv(inter_nc, nc, kernel_size, stride, padding, bias, mode='C'+act_mode)
        self.theta = conv(nc, inter_nc, kernel_size, stride, padding, bias, mode='C')

        if downsample:
            if downsample_mode == 'avgpool':
                downsample_block = downsample_avgpool
            elif downsample_mode == 'maxpool':
                downsample_block = downsample_maxpool
            elif downsample_mode == 'strideconv':
                downsample_block = downsample_strideconv
            else:
                raise NotImplementedError('downsample mode [{:s}] is not found'.format(downsample_mode))
            self.phi = downsample_block(nc, inter_nc, kernel_size, stride, padding, bias, mode='2')
            self.g = downsample_block(nc, inter_nc, kernel_size, stride, padding, bias, mode='2')
        else:
            self.phi = conv(nc, inter_nc, kernel_size, stride, padding, bias, mode='C')
            self.g = conv(nc, inter_nc, kernel_size, stride, padding, bias, mode='C')


    def forward(self, x):
        '''
        :param x: (b, c, t, h, w)
        :return:
        '''

        batch_size = x.size(0)

        g_x = self.g(x).view(batch_size, self.inter_nc, -1)
        g_x = g_x.permute(0, 2, 1)

        theta_x = self.theta(x).view(batch_size, self.inter_nc, -1)
        theta_x = theta_x.permute(0, 2, 1)
        phi_x = self.phi(x).view(batch_size, self.inter_nc, -1)
        f = torch.matmul(theta_x, phi_x)
        f_div_C = F.softmax(f, dim=-1)

        y = torch.matmul(f_div_C, g_x)
        y = y.permute(0, 2, 1).contiguous()
        y = y.view(batch_size, self.inter_nc, *x.size()[2:])
        W_y = self.W(y)
        z = W_y + x

        return z

后续再添加 

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值