对于训练中多个loss的权重问题的解决方案

博主分享了在训练神经网络时如何设置多目标损失函数的权重问题。他们提到,损失函数的尺度通常不影响性能,但需避免次要损失项主导训练。提供了几种实践方法,如手动调整损失尺度、使用超参数调整损失权重,以及一种基于损失相对大小的动态权重分配策略。建议根据训练过程中的表现来动态调整各个损失项的权重,确保模型关注所有目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:hzwer
链接:https://www.zhihu.com/question/375794498/answer/2292320194
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

这也是个困扰了我多年的问题:

loss = a * loss1 + b * loss2 + c * loss3 怎么设置 a,b,c?

我的经验是 loss 的尺度一般不太影响性能,除非本来主 loss 是 loss1,但是因为 b,c 设置太大了导致其他 loss 变成了主 loss。

实践上有几个调整方法:

  1. 手动把所有 loss 放缩到差不多的尺度,设 a = 1,b 和 c 取 10^k,k 选完不管了;
  2. 如果有两项 loss,可以 loss = a * loss1 + (1 - a) * loss2,通过控制一个超参数 a 调整 loss;
  3. 我试过的玄学躺平做法 loss = loss1 / loss1.detach() + loss2 / loss2.detach() + loss3 loss3.detach(),分母可能需要加 eps,相当于在每一个 iteration 选定超参数 a, b, c,使得多个 loss 尺度完全一致;进一步更科学一点就 loss = loss1 + loss2 / (loss2 / loss1).detach() + loss3 / (loss3 / loss1).detach(),感觉比 loss 向 1 对齐合理

可以根据自己训练的情况调整三个loss的权重,谁高了可以加大一些权重,意思就是如果某个分支loss高了,那么网络的注意力都会去这个高loss的分支去,从而对其他支路的Loss没有贡献。这里说的“增大权重”就是将loss的量级减少,最好是三个loss都在一个量级为好

### Focal Loss 和 Dice Loss权重设置方法及其关系 #### 权重参数的配置 在实际应用中,Focal Loss 和 Dice Loss 都可以通过调整权重参数来优化模型性能。以下是两种损失函数权重参数的具体配置方式: 1. **Focal Loss权重设置** Focal Loss 是一种动态加权交叉熵损失函数,在其定义中引入了一个调节因子 \((1-p_t)^{\gamma}\),用于降低简单样本的影响并聚焦于困难样本[^3]。因此,Focal Loss 的主要权重控制来自于超参数 \(\gamma\) 和平衡系数 \(\alpha\): - 超参数 \(\gamma\): 控制容易分类样本的下降速度,通常取值范围为 \(0 \leq \gamma \leq 5\)。较大的 \(\gamma\) 值会进一步减少易分样本对总损失的贡献。 - 平衡系数 \(\alpha\): 表示正负类别的先验比例,一般设为接近真实数据分布的比例。 2. **Dice Loss权重设置** Soft Dice Loss 主要关注的是预测掩码与真实标签之间的交集和联合比率。它的形式化表达如下: \[ L_{\text{dice}} = 1 - \frac{2|A \cap B|}{|A| + |B|} \] 在多任务学习或多模态融合场景下,Soft Dice Loss 可通过乘法项加入全局权重 \(w_d\) 进行缩放[^2]: - 全局权重 \(w_d\): 根据实验效果手动设定或采用自适应策略(如基于验证集的表现自动调整)。对于类别不平衡的任务,\(w_d\) 应适当增大以弥补少数类别的影响。 #### 两者的联系与区别 尽管 Focal Loss 和 Dice Loss 各有特点,但在某些情况下可以协同工作以提升整体性能: - **共同点**: 它们都旨在缓解类别不平衡带来的挑战,并且能够增强模型对复杂背景区域或者稀疏目标的关注度[^1]。 - **差异性**: - Focal Loss 更侧重于解决二分类问题中的难例挖掘,尤其适用于密集对象检测领域; - Dice Loss 则更倾向于评估像素级语义分割的质量,强调前景与背景之间边界的一致性和连续性。 当将二者结合起来时,需注意合理分配各自所占比例,比如按照经验初始赋值为 `λ_f * focal_loss + λ_d * dice_loss` ,其中 \(λ_f\) 和 \(λ_d\) 分别代表两个损失的重要性程度。具体数值可通过网格搜索或其他自动化调参技术获得最佳组合方案。 ```python import torch.nn as nn class CombinedLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2, w_dice=0.5, w_focal=0.5): super(CombinedLoss, self).__init__() self.focal_loss_fn = FocalLoss(alpha=alpha, gamma=gamma) self.dice_loss_fn = DiceLoss() self.w_dice = w_dice self.w_focal = w_focal def forward(self, pred, target): focal_loss_val = self.focal_loss_fn(pred, target) dice_loss_val = self.dice_loss_fn(pred, target) total_loss = (self.w_focal * focal_loss_val) + (self.w_dice * dice_loss_val) return total_loss ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值