在python中使用KNN算法处理缺失的数据

处理缺失的数据并不是一件容易的事。 方法的范围从简单的均值插补和观察值的完全删除到像MICE这样的更高级的技术。 解决问题的挑战性是选择使用哪种方法。 今天,我们将探索一种简单但高效的填补缺失数据的方法-KNN算法。

KNN代表“ K最近邻居”,这是一种简单算法,可根据定义的最接近邻居数进行预测。 它计算从您要分类的实例到训练集中其他所有实例的距离。

正如标题所示,我们不会将算法用于分类目的,而是填充缺失值。 本文将使用房屋价格数据集,这是一个简单而著名的数据集,仅包含500多个条目。

这篇文章的结构如下:

  1. 数据集加载和探索
  2. KNN归因
  3. 归因优化
  4. 结论

数据集加载和探索

如前所述,首先下载房屋数据集。 另外,请确保同时导入了Numpy和Pandas。 这是前几行的外观:

默认情况下,数据集缺失值非常低-单个属性中只有五个:

让我们改变一下。 您通常不会这样做,但是我们需要更多缺少的值。 首先,我们创建两个随机数数组,其范围从1到数据集的长度。 第一个数组包含35个元素,第二个数组包含20个(任意选择):

i1 = np.random.choice(a=df.index, size=35)
i2 = np.random.choice(a=df.index, size=20)

这是第一个数组的样子:

您的数组将有所不同,因为随机化过程是随机的。 接下来,我们将用NAN替换特定索引处的现有值。 这是如何做:

df.loc[i1, 'INDUS'] = np.nan
df.loc[i2, 'TAX'] = np.nan

现在,让我们再次检查缺失值-这次,计数有所不同:

这就是我们从归因开始的全部前置工作。 让我们在下一部分中进行操作。

KNN归因

整个插补可归结为4行代码-其中之一是库导入。 我们需要sklearn.impute中的KNNImputer,然后以一种著名的Scikit-Learn方式创建它的实例。 该类需要一个强制性参数– n_neighbors。 它告诉冒充参数K的大小是多少。

首先,让我们选择3的任意数字。稍后我们将优化此参数,但是3足以启动。 接下来,我们可以在计算机上调用fit_transform方法以估算缺失的数据。

最后,我们将结果数组转换为pandas.DataFrame对象,以便于解释。 这是代码:

from sklearn.impute import KNNImputer

imputer = KNNImputer(n_neighbors=3)
imputed = imputer.fit_transform(df)
df_imputed = pd.DataFrame(imputed, columns=df.columns)

非常简单。 让我们现在检查缺失值:

尽管如此,仍然存在一个问题-我们如何为K选择正确的值?

归因优化

该住房数据集旨在通过回归算法进行预测建模,因为目标变量是连续的(MEDV)。 这意味着我们可以训练许多预测模型,其中使用不同的K值估算缺失值,并查看哪个模型表现最佳。

但首先是导入。 我们需要Scikit-Learn提供的一些功能-将数据集分为训练和测试子集,训练模型并进行验证。 我们选择了“随机森林”算法进行训练。 RMSE用于验证:

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error

rmse = lambda y, yhat: np.sqrt(mean_squared_error(y, yhat))

以下是执行优化的必要步骤:

迭代K的可能范围-1到20之间的所有奇数都可以

  1. 使用当前的K值执行插补
  2. 将数据集分为训练和测试子集
  3. 拟合随机森林模型
  4. 预测测试集
  5. 使用RMSE进行评估

听起来很多,但可以归结为大约15行代码。 这是代码段:

def optimize_k(data, target):
    errors = []
    for k in range(1, 20, 2):
        imputer = KNNImputer(n_neighbors=k)
        imputed = imputer.fit_transform(data)
        df_imputed = pd.DataFrame(imputed, columns=df.columns)
        
        X = df_imputed.drop(target, axis=1)
        y = df_imputed[target]
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

        model = RandomForestRegressor()
        model.fit(X_train, y_train)
        preds = model.predict(X_test)
        error = rmse(y_test, preds)
        errors.append({'K': k, 'RMSE': error})
        
    return errors

现在,我们可以使用修改后的数据集(在3列中缺少值)调用optimize_k函数,并传入目标变量(MEDV):

k_errors = optimize_k(data=df, target='MEDV')

就是这样! k_errors数组如下所示:

以视觉方式表示:

看起来K = 15是给定范围内的最佳值,因为它导致最小的误差。 我们不会涵盖该错误的解释,因为它超出了本文的范围。 让我们在下一节中总结一下。

总结

编写处理缺少数据归因的代码很容易,因为有很多现有的算法可以让我们直接使用。 但是我们很难理解里面原因-了解应该推定哪些属性,不应该推算哪些属性。 例如,可能由于客户未使用该类型的服务而缺失了某些值,因此没有必要执行估算。

最终确定是否需要进行缺失数据的处理,还需要有领域的专业知识,与领域专家进行咨询并研究领域是一种很好的方法。

作者:Dario Radečić

deephub翻译组

KNN(K-Nearest Neighbors)算法是一种基本的分类算法,在处理购物数据可以用于判断用户的性别。下面是使用Python实现KNN算法来进行用户性别判断的步骤: 1. 收集并准备购物数据:从购物记录收集用户的数据,包括购买商品的种类、数量、价格等信息,并且将每条记录对应的用户性别标签进行标注。 2. 数据处理:对收集到的购物数据进行预处理,包括数据清洗、缺失处理数据规范化等。例如,将购买的商品种类转化为数值型特征向量,以便后续计算。 3. 划分训练集和测试集:将数据集划分为训练集和测试集,其训练集用于训练模型,测试集用于评估模型准确性。 4. 计算测试样本和训练样本的距离:对于每个测试样本,计算其与所有训练样本之间的距离。一般可以使用欧式距离或曼哈顿距离等来度量距离大小。 5. 选择K值和投票机制:选择K值(邻居的数量),一般可以通过交叉验证来确定最优的K值。然后,根据K值选择最近的K个训练样本作为该测试样本的邻居。 6. 根据邻居的标签进行判断:根据邻居的标签,采用投票机制来判断该测试样本的性别。例如,如果K个邻居有更多的标签为“女性”,则判断该测试样本为“女性”,否则判断为“男性”。 7. 评估模型准确性:将预测结果与测试样本真实标签进行比较,计算分类准确率和其他评估指标来评估模型的准确性。 最后,通过以上步骤,我们可以使用PythonKNN算法实现从购物数据判断用户的性别。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值