1.通用的特殊矩阵
zeros函数:产生全0矩阵。
ones函数:产生全1矩阵。
eye函数:产生对角线为1的矩阵。当矩阵是方阵时,得到一个单位矩阵。
rand函数:产生(0,1)区间均匀分布的随机矩阵。
randn函数:产生均值为0,方差为1的标准正态分布随机矩阵。
zeros函数的调用格式:
zeros(m):产生m×m零矩阵。
zeros(3)
ans =
0 0 0
0 0 0
0 0 0
zeros(m,n):产生m×n零矩阵。
zeros(3,2)
ans =
0 0
0 0
0 0
zeros(size(A)):产生与矩阵A同样大小的零矩阵。
>> A = zeros(2,3);
>> zeros(size(reshape(A,3,2)))
ans =
0 0
0 0
0 0
2.用于专门学科的特殊矩阵
2.1魔方矩阵(Magic Square)
n阶魔方阵由1,2,3,…,n平方共n平方个整数组成,且每行、每列,主、副对角线上各n个元素之和都相等。
n阶魔方阵每行每列元素的和为(1+2+3+…+ n平方)/n=(n+n立方)/2
n>2时有很多不同的n阶魔方阵,MATLAB函数magic(n)产生一个特定的魔方阵。
>> M=magic(3)
M =
8 1 6
3 5 7
4 9 2
2.2范德蒙矩阵
范得蒙矩阵的最后一列全为1,即向量v各元素的零次方,倒数第二列为指定的向量v,
即向量v各元素的一次方, 其他各列是其后列与倒数第二列的点乘积
>> A = vander(1:5)
A =
1 1 1 1 1
16 8 4 2 1
81 27 9 3 1
256 64 16 4 1
625 125 25 5 1
2.3希尔伯特矩阵
>> format rat
>> H = hilb(4)
H =
1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7