OpenVINO工具套件使用教程

工具套件下载地址:
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/download.html
安装说明:
https://docs.openvino.ai/nightly/openvino_docs_install_guides_install_dev_tools.html

1.OpenVINO ™工具套件

OpenVINO工具包(ToolKit)主要包括两个核心组件,模型优化器(Model Optimizer)推理引擎(Inference Engine)

  • 模型优化器(Model Optimizer)将给定的模型转化为标准的 Intermediate Representation (IR) ,并对模型优化。
    模型优化器支持的深度学习框架:ONNX、TensorFlow、Caffe、MXNet、Kaldi
  • 推理引擎(Inference Engine)支持硬件指令集层面的深度学习模型加速运行,同时对传统的OpenCV图像处理库也进行了指令集优化,有显著的性能与速度提升。
    支持的硬件设备:CPU、GPU、FPGA、VPU

完整的工作流:
在这里插入图片描述

  • model:modeldownloader下载公共模型、open_model_zoo自带的模型或者自行训练
  • prepare_inference: 模型优化器,将模型转化为推理引擎需要的格式文件
  • benchmark: 性能因素与基准测试方法
  • select system: 选择正确的系统和操作硬件
  • decode density: 选择合适硬件的另一个因素是系统可支持多少个摄像头
  • full pipeline: 构建流水线进行测试
  • AI application:构建AI应用

使用实例:

模型优化器:将squeezenet1.1.caffemodel转化为IR格式

…\Intel\openvino_2021\deployment_tools\model_optimizer>

mo_caffe.py --input_model  ..\OV-200-lab-files\02\exercise-1\public\squeezenet1.1\squeezenet1.1.caffemodel  --output_dir ..\OV-200-lab-files\02\exercise-1\public\squeezenet1.1\
推理引擎:查看classification_sample_async.py文件并运行

…\Intel\openvino_2021\inference_engine\samples\python\classification_sample_async\classification_sample_async.py 把该文件复制到目标文件夹
…\OV-200-lab-files\02\exercise-1\public\squeezenet1.1>

python classification_sample_async.py -h
python classification_sample_async.py -i car.png -m squeezenet1.1.xml --labels squeezenet1.1.labels -d CPU
python classification_sample_async.py -i images/car.png -m squeezenet1.1.xml --labels squeezenet1.1.labels -d CPU
python classification_sample_async.py -i boy-computer.png -m squeezenet1.1.xml --labels squeezenet1.1.labels -d CPU
python classification_sample_async.py -i burger1.png -m squeezenet1.1.xml --labels squeezenet1.1.labels -d CPU
将squeezenet1.1.caffemodel替换为resnet-50.caffemodel重复上述两个操作
mo_caffe.py --input_model  ..\OV-200
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值