半监督节点分类:标签传播和信息传递

1 导论

1.1 求解方法对比

半监督节点分类:用已知标签节点预测未知标签的节点
求解思路

  1. 节点特征工程
  2. 节点表示学习:端到端的表示学习
  3. 标签传播(消息传递)
  4. 图神经网络
    在这里插入图片描述

1.2 直推式学习与归纳式学习

直推式学习:未知标签的节点可能被用于训练,但过程中没有新节点加入,不需要对新节点进行泛化,不需要进行新节点的预测;
与之相反的是inductive learning,归纳式学习:对新节点立刻进行预测,可以泛化到新节点

在这里插入图片描述

1.3 半监督节点分类任务

在这里插入图片描述
已知:
部分节点有标签,0和1;部分节点无标签
每个节点有一个属性特征向量
预测:无标签节点属于1和0的概率
在这里插入图片描述
在这里插入图片描述
许多应用可以基于这个模型
在这里插入图片描述

1.4 方法

1.4.1 两种关联

在这里插入图片描述

a. Homophily

具有相似属性特征的节点更可能相连且有相同的类别
在这里插入图片描述
举例:高中生社团,节点颜色表示对不同的领域感兴趣
在这里插入图片描述

b. Influence

社交关系会影响节点类别
在这里插入图片描述

1.4.2 五种方法

如何利用两种关联?:KNN最近邻分类
在这里插入图片描述
前两种属于集体分类
三属于一种后处理技术
四属于消息传递
五属于一种自监督学习
在这里插入图片描述

2 label propagation

仅使用网络连接特征

2.1 初始化

已知标签为1和0,未知标签设为0.5
在这里插入图片描述

2.2 迭代计算

第一次迭代:
周围节点标签求平均值
在这里插入图片描述
第四次迭代
在这里插入图片描述
在这里插入图片描述

2.3 小结

周围节点标签求平均值,迭代计算
缺点
不保证收敛
仅用到网络连接信息,没有用到节点属性信息
在这里插入图片描述
在这里插入图片描述

3 iterative classification

3.1 步骤

训练两个分类器:
base classifier:Φ1仅使用节点属性特征
relational classifier:Φ2使用节点属性特征和网络连接特征
在这里插入图片描述
Zv是包含邻域节点类别信息的向量,n维向量代表了这个节点的连接信息
可以自定义:

  1. 周围不同节点类别的个数(绿色节点有多少,红色节点有多少)
  2. 附近数量最多的类别是什么(附近绿色节点多还是红色节点多)
  3. 有多少个不同的类别
    标注好的训练集
    使用已标注数据训练两个分类器
    没有标签的训练集
    用训练好的Φ1预测位置类别的Yv(类别向量)
    用Yv计算Zv
    用Φ2预测所有节点类别
    重复:重新计算Zv,重新预测Yv
    在这里插入图片描述

3.2 举例:

在这里插入图片描述
第一步:用已有标签节点的属性特征向量训练一个Φ1
在这里插入图片描述
第二步:构造Zv,训练Φ2
在这里插入图片描述
第三步:先用Φ1在未知节点上进行一次预测,得到标签Y
在这里插入图片描述
第四步迭代:
更新Zv
更新Yv
在这里插入图片描述
第五步:停止迭代
在这里插入图片描述

3.3 小结

基本假设:马尔科夫假设
我的类别取决于与我相连的节点的类别,与我邻居的邻居没有关系
在这里插入图片描述
在这里插入图片描述

4 correct&smooth

不属于collective classification,属于一种后处理技术
在这里插入图片描述
第一步:在已经有标签的节点上训练模型
在这里插入图片描述
第二步:用训练好的模型对所有的节点进行预测,预测结果并不是非0即1的,而是概率值
在这里插入图片描述第三步:后处理correct&smooth
correct:让模型对不确定程度进行扩散
smooth:让最终的预测结果变得平滑

4.1correct:

在这里插入图片描述
只计算有标注的节点
在这里插入图片描述
得到error矩阵,
在这里插入图片描述
di表示第i个节点的度
在这里插入图片描述
归一化扩散矩阵有以下好处:
特征值在(-1,1)之间,不会发三
当特征值为1时,特征向量为D^0.5*1(这里的1是一个向量)
在这里插入图片描述
在这里插入图片描述
迭代计算误差矩阵
α越大表示更愿意相信传播来的error,否则更相信原来的error
在这里插入图片描述
s是超参数
在这里插入图片描述

4.2 smooth

在这里插入图片描述
对置信度(最终的预测结果)进行传播
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.3 小结

在这里插入图片描述

5 Loopy belief propagation

节点之间可以传消息
这一时刻的状态仅取决于上一时刻的状态
当所有的节点达成共识时,就得到了最终的预测结果
在这里插入图片描述

5.1 消息传递

报数
在这里插入图片描述
树状图
从下级逐级向上级汇报
在这里插入图片描述

5.2 定义

在这里插入图片描述

5.3 步骤

在这里插入图片描述
在这里插入图片描述

5.4 问题

当图中有环时?
消息不再是独立的
在这里插入图片描述
在这里插入图片描述

5.5 总结

易编程和并行
不保证收敛
需要训练参数优化得到
在这里插入图片描述

6 masked label prediction

bert:语言模型,把中间词扣掉,让周围词去预测
在这里插入图片描述
随机把一些节点的label设为0,尝试用已有信息的label,猜出这些节点的label;进而构造自监督模型,迭代优化
在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值