多速率处理与滤波器设计

一、滤波器设计

二、多速率处理

将一个信号从某一给定的采样速率转换到另一个不同采样率的过程称为采样率转换

1. 整数倍抽样

 x[n] = x_c(nT)

x[n]的离散时间傅里叶变换(DTFT):

X(e^{jw})=\frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c \left[ j \left( \frac{w}{T} - \frac{2\pi k}{T} \right ) \right ]

整数倍抽样后: 

x_d[n] = x[nM] = x_c(nMT)

即:T_d = MT

x_d[n]的离散时间傅里叶变换(DTFT):
X_d(e^{jw})=\frac{1}{T_d} \sum_{k=-\infty}^{+\infty} X_c \left[ j \left( \frac{w}{T_d} - \frac{2\pi r}{T_d} \right ) \right ] = \frac{1}{MT} \sum_{k=-\infty}^{+\infty} X_c \left[ j \left( \frac{w}{MT} - \frac{2\pi r}{MT} \right ) \right ]

r = i + kM,其中-\infty < k < \infty,0\leq i \leq M-1

X_d(e^{jw}) = \frac{1}{MT} \sum_{k=-\infty}^{+\infty} \sum_{i = 0}^{M-1} X_c \left[ j \left( \frac{w}{MT} - \frac{2\pi (i+kM)}{MT} \right ) \right ] \\= \frac{1}{M} \sum_{i=0}^{M-1} \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c \left[ j \left( \frac{w}{MT} - \frac{2\pi (i+kM)}{MT} \right ) \right ] \\= \frac{1}{M} \sum_{i=0}^{M-1} \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c \left[ j \left( \frac{w}{MT} - \frac{2\pi i}{MT} - \frac{2\pi k}{T}\right ) \right ] \\= \frac{1}{M} \sum_{i=0}^{M-1} \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c \left[ j \left( \frac{(w - 2\pi i) /M}{T} - \frac{2\pi k}{T}\right ) \right ] \\= \frac{1}{M} \sum_{i=0}^{M-1} X \left(e^{j (w-2\pi i)/M }\right)

整数倍抽样后的数字信号x_d[n]的离散时间傅里叶变换X_d(e^{jw})可以看作是由频率受到M倍扩展的,并按2\pi的整数倍移位的M个周期傅里叶变换X(e^{jw})复本的幅度加权和。

连续时间信号x_c(t)

采样信号x_s(t) 

 离散时间信号x[n]

 整数倍抽样后信号x_d[n]M = 2, 令\Omega_N T = \frac{\pi}{2}

 对应的采样信号x_ds(t)

X_d(e^{j\Omega}) = X_d(e^{jw})|_{w = \Omega T_d = \Omega MT} \\= \frac{1}{M} \sum_{i=0}^{M-1} X \left(e^{j (w-2\pi i)/M }\right) |_{w = \Omega T_d = \Omega MT} \\=\frac{1}{M} \sum_{i=0}^{M-1} X \left(e^{j ( \Omega MT-2\pi i)/M }\right) \\= \frac{1}{M} \sum_{i=0}^{M-1} X \left(e^{j \left( \Omega - \frac{2\pi i}{MT} \right ) T }\right)

 若X(e^{jw}) = 0w_N \leq |w| \leq \pi,且\frac{2\pi}{M} \geq 2w_N,则抽样后不会产生混叠。

 若M选取不合理,会导致混叠抽样,故一般在抽样前会加预滤波避免混叠。

2. 整数倍插值

 x_e[n] = \left\{\begin{matrix} x[n/L] & n = 0, \pm L, \pm 2L, \cdots \\ 0 & {\rm others} \end{matrix}\right. = \sum_{k=-\infty}^{+\infty} x[k] \delta[n-kL]

X_e(e^{jw}) = \sum_{n=-\infty}^{+\infty} x_e[n] e^{-jwn} \\= \sum_{n=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} x[k] \delta[n-kL] e^{-jwn} \\= \sum_{k=-\infty}^{+\infty} x[k] e^{-jwkL} \\= X(e^{jwL})

插值后的序列

x_i[n] = x_e[n] \otimes h_i[n] \\= \sum_{k=-\infty}^{+\infty} x[k] \delta[n-kL] \otimes \frac{\sin(\pi n/L)}{\pi n/L} \\= \sum_{k=-\infty}^{+\infty} x[k] \frac{\sin\left[ \pi (n-kL)/L \right ]}{\pi (n-kL)/L}

但是无法实现,可采用简单线性插值

 

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值