表格详细解答——》动态规划求解0/1背包问题

1.动态规划基本思想:
(1)将原始问题划分一系列子问题;
(2)求解每个子问题仅一次,并将其结果保存在一个表中,以后用到时直接存取,不重 复计算,节省计算时间;
(3)自底向上计算。
2.解题四个部分:
(1)首先确定状态需要2个意识:
① 最后一步(最优策略中使用的最后一个物品M-wl的最大价值)
② 化成子问题(知道物品能不能装到j-w[i]的最大价值)(0<=j<=M)
(2)转移方程:
dp[i][j]=max(dp[i-1][j-w[i]]+pi,dp[i-1][j])(0<j<M),j>=w[i]
dp[i][j]=dp[i-1][j],j<w[i]
(3)初始条件和边界情况:
dp[0][0]=0;j>=wi表示能装下第i个物品
(4)计算顺序
3.代码实现

#include<iostream>
using namespace std;
int dp[21][1010];//数组初始值为0
int p[21],w[21];
int main(){
	int M,N;
	cin>>M>>N;//N表示物品个数,M表示背包载重量 
	for(int i=1;i<=N;i++){
	    cin>>w[i]>>p[i];	//p[i]表示物品的价值,w[i]表示物品的载重量
	}
	for(int i=1;i<=N;i++){
		for(int j=0;j<=M;j++){  //j每次从0开始遍历到M
			if(j>=w[i]){
                //当j大于w[i]
				dp[i][j]=max(dp[i-1][j-w[i]]+p[i],dp[i-1][j]);
               //更新物品价值,将前一个位置j-w[i]位置的价值加上当前物品的价值p[i]与第i-1行第j列的物品价值dp[i-1][j]比较大小;
			}else{
				dp[i][j]=dp[i-1][j];
			}
		}
	}
    for(int i=0;i<=N;i++){
	for(int j=0;j<=M;j++){
			if(j!=M){
				cout<<dp[i][j]<<"  ";
			}else{
				cout<<dp[i][j]<<endl;
			}
		}
	}
	cout<<dp[N][M];
	return 0;
} 

在这里插入图片描述
对于每一个物品i载重量w[i]的判断,将j从0遍历到M,首先j>=w[i]表示如果背包的载重量为j,必须保证可以把物品i放进去,更新此时背包价值 dp[i][j]=max(dp[i-1][j-w[i]+p[i],dp[i-1][j]])将前一个物品在j-w[i]位置的价值再加上当前物品的价值;否则此时的j装不下w[i],dp[i][j]=dp[i-1][j];
PS:
(1)dp二维数组在初始化时,元素初值都为0;
(2)当载重量j从0遍历到M时,if条件必须保证此时的背包载重量可以承载此物品j>=w[i];

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值