良好的阅读体验
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
思考改如何解决这个问题:
1.怎么样来将选择的状态表示出来呢?
2.选择的状态表示出来后又应该怎么计算呢?
简单说解决以下问题:
1.列出状态的表达方式。
2.列出状态方程。
对于每件物品,在不同的体积下,可以选或不选两种状态。
那么我们列出状态的表达式:
f[i][j]
表达的含义是:从前i个物品选,体积为j的价值最大值。
那么状态方程就可以这样写:
f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
表达的含义是:选或者不选这件物品
f[i-1][j]是指在j体积下,不选这件物品的最大值。
f[i-1][j-v[i]]+w[i] 是指选择这件物品,那么需要有这个体积的容量,所以f[i-1][j-v[i]]
再加上这件物品的价值。
那么看代码:
#include<iostream>
#include<cstring>
using namespace std;
int n,m;
int v[1100],w[1100];
int f[1100][1100];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
f[i][j]=f[i-1][j];
if(j>=v[i])f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
/*
1.为什么一定要f[i][j]=f[i-1][j]呢?
因为如果没有那么大的容量选择这件物品,那么此时最大的价值该为
体积为j不选这件物品的状态最大值也就是f[i-1][j]
2.记得更新状态的条件是有那么大的容量,如果没有那么就不可以进行更新。
*/
}
}
cout<<f[n][m]<<endl;
return 0;
}
如果仔细看看你会发现一个问题:
每次更新都是由上一层的状态更新,也就是说他们可以去掉本身的维度
不需要考虑遍历到哪个物品的状态。
由此状态方程可以转变成:
f[j]=max(f[j],f[j-v[i]]+w[i]);
但是因为大体积状态都是由小体积状态更新而来,
所以在遍历新的物品时,体积需要从大到小遍历。
看代码:
#include<iostream>
#include<cstring>
using namespace std;
int n,m;
int v[1100],w[1100];
int f[1100];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
{
for(int j=m;j>=0;j--)
{
if(j>=v[i])f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[m]<<endl;
return 0;
}
记得条件j>=v[i]不可少
补充说明:
在acwing上 y总 说二维转化成一维是 等式的变换转化,但是我认为这样解释有点牵强,再初学时需要考虑实际情况,很多人在学习背包时,很是盲目,我的老师在与我讲解时,基本上都是手动模拟excel,通过模拟背包来教我,再去看代码,这样才会对整个流程清晰,对状态方程的由来有着清楚的认识,对二维转化成一维是因为什么,通过找到规律进行总结而来,这样才会更简单的写出代码。
发现当你头脑解决不了的时候,可以用手动模拟来判断问题和寻找问题。